

MIAI DAYS 2022

MIAI Multidisciplinary Institute in Artificial Intelligence Luisa Sophie Werner Neural-Symbolic Integration of Knowledge Extraction and Reasoning on Graph Data

LIG Lab - INRIA - TyrexTeam 3rd year Supervisors: Nabil Layaida, Pierre Genèves

Deep Learning led to breakthroughs in many different domains....

Multidisciplinary Institute In Artificial Intelligence

ImageNet Challenge: Advancement in deep learning and computer vision

Deep Learning In Health Care -A Ray of Hope in the Medical World

AlphaGo defeats world Go champion Ke Jie

AlphaGo, the Al created by Alphabet's DeepMind, has beaten world champion Ke Jie at the ancient game of Go

How NVIDIA enabled GPU-accelerated deep learning and revolutionized the AI field

200 languages within a single Al model: A breakthrough in high-quality machine

January 11, 2022 Big Growth Forecasted for Big Data

MIAI-DAYS 2022

Before Deep Learning became so popular AI research was focused on **Symbolic AI**

Multidisciplinary Institute In Artificial Intelligence

"In Knowledge lies the power" [1]

Before Deep Learning became so popular Al research was focused on **Symbolic Al**

Multidisciplinary Institute In Artificial Intelligence

"In Knowledge lies the power" [1]

High-level symbolic representations of problems

Based on tools such as Logic Programming, Production Rules, Semantic Nets

Example applications: Ontologies, Automated theorem provers, Expert systems

Language-like/logic representations

Language-like/logic representations

Numeric representations

Data-efficient

Data-hungry

Language-like/logic representations

Numeric representations

Data-efficient

Data-hungry

Robust to noise

How Do Humans Learn ?

Learning from Experience/Exercise

Learning from Explanation

How Do Humans Learn ?

Learning from Experience/Exercise

> iterative unconsciously

eg. practicing a sport, learning an instrument, learning to walk

Learning from Explanation

non-iterative consciously

eg. learning vocabulary, learning how to read music

Most learning activities in humans involve both components!

Neural-Symbolic Integration -Bringing together the best of both worlds

Neural-Symbolic Integration is a field where classic symbolic knowledge mechanisms are combined with neural networks

Neural-Symbolic Integration -Bringing together the best of both worlds

Goals of Neural-Symbolic Approaches

Knowledge in Neural-Symbolic Approaches -Symbolic vs. Numeric Knowledge

First-Order Logic

 $\forall x, y : Horse(x) \land Stripes(x) \implies Zebra(x)$

Vectors/Tensors in

in \mathbb{R}^n

Knowledge in Neural-Symbolic Approaches -Symbolic vs. Numeric Knowledge

Knowledge in Neural-Symbolic Approaches -Symbolic vs. Numeric Knowledge

. . .

Neural-Symbolic Integration on Graph Data

Graphs are omnipresent!

Neural-Symbolic Integration on Graph Data

Graphs are omnipresent!

Graph: Set of related objects

Beyond grid-structured data

What is special about Graph Data ?

Arbitrary Size

Complex topological structure

No fixed ordering or reference point

se Often dynamic

Heterogeneous node and edge features

What is special about Graph Data ?

- Arbitrary Size
- Complex topological structure
- No fixed ordering or reference point

se Often dynamic

Heterogeneous node and edge features

Learning on Graphs requires algorithms that...

- ... capture graph topology (relations)
- ... are scalable in space and time

What is special about Graph Data ?

- Arbitrary Size
- Complex topological structure
- No fixed ordering or reference point

se Often dynamic

Heterogeneous node and edge features

Learning on Graphs requires algorithms that...

... capture graph topology (relations)

... are scalable in space and time

Scalable Graph Neural Networks

Neural-Symbolic Approaches on Graphs -Knowledge Enhanced Neural Networks (KENN) [2]

Neural-Symbolic Approaches on Graphs -Knowledge Enhanced Neural Networks (KENN) [2]

Relational KENN [2]

Binary predicates P(x,y) to encode relations

MIAI-DAYS 2022

Relational KENN [2]

Use Case: Citeseer Citation Graph

Task Classify scientific publications in categories

Background Knowledge

"Documents that cite each other have the same category" $\forall x, y : Class(x) \land Cite(x, y) \implies Class(y)$

Results

left Performance improvement through Knowledge Enhancers

de Particularly helpful when training data is scarce

(1) Relational KENN is not implemented in a graph-oriented framework

(1) Relational KENN is not implemented in a graph-oriented framework

Re-impementation of Relational KENN in PyTorch + PyTorch Geometric [3] and Reproduction of the published experiments

Luisa Werner. Nabil Layaida. Pierre Geneves. On the Replicability of Knowledge Enhanced Neural Networks in a Graph Neural Network Framework. 2022.

(1) Relational KENN is not implemented in a graph-oriented framework

Re-impementation of Relational KENN in PyTorch + PyTorch Geometric [3] and Reproduction of the published experiments

Luisa Werner. Nabil Layaida. Pierre Geneves. On the Replicability of Knowledge Enhanced Neural Networks in a Graph Neural Network Framework. 2022.

(2) Lack of Benchmark Datasets in the Neural-Symbolic Domain

(1) Relational KENN is not implemented in a graph-oriented framework

Re-impementation of Relational KENN in PyTorch + PyTorch Geometric [3] and Reproduction of the published experiments

Luisa Werner. Nabil Layaida. Pierre Geneves. On the Replicability of Knowledge Enhanced Neural Networks in a Graph Neural Network Framework. 2022.

(2) Lack of Benchmark Datasets in the Neural-Symbolic Domain

Apply KENN to Datasets from Open Graph Benchmark [4]

(Paper in submitted and in review)

(3) Relational KENN is not applicable to arbitrary large graphs

(3) Relational KENN is not applicable to large graphs.

Mini-batching on non-relational data

Mini-batching on relational data

Objects are not independent: Tradeoff Feasibility vs. Information Loss

Apply graph-specific batching algorithms^[5] to Relational KENN

(4) Relational KENN is only tested in conjunction with a simple Base NN

(4) Relational KENN is only tested in conjunction with a simple Base NN

Use State-of-the-Art Graph Neural Networks [5] as Base Neural Networks and test them on multiple Node classification benchmark datasets

Future Work -Neural Symbolic Learning on Knowledge Graphs

Knowledge Graphs

Knowledge base that uses graph-structured data

Collection of various heterogeneous data sources AND underlying semantics (ontologies)

***Examples:** YAGO, DBPedia, Freebase

Applications: search engines, question-answering systems

Tasks to solve with Neural-Symbolic approaches: KG completion, KG verification

Thanks for your Attention!

Questions?

MIAI-DAYS 2022

[1] Len Shustek. 2010. An interview with Ed Feigenbaum. Commun. ACM 53, 6 (June 2010), 41–45. https://doi.org/10.1145/1743546.1743564

[2] Daniele Alessandro and Serafini, Luciano. Knowledge Enhanced Neural Networks for relational domains. 2022. <u>https://arxiv.org/abs/2205.15762</u>

[3] Fey Matthias and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric. 2019. https://arxiv.org/abs/1903.02428.

[4] Hu et al. Open Graph Benchmark: Datasets for Machine Learning on Graphs. 2021. https://arxiv.org/abs/2005.00687.

[5] Duan et al. A Comprehensive Study on Large-Scale Graph Training: Benchmarking and Rethinking. 2022. <u>https://arxiv.org/pdf/2210.07494.pdf</u>

References Images

Hari Srinivasan. How to Segment Traffic Flows at the Network Edge. 2017. <u>https://blog.equinix.com/blog/2017/05/08/how-to-segment-traffic-flows-at-the-network-edge/</u>

Prudhvi Gnv. ImageNetChallenge: Advancement in deep learning and computer vision. 2020. <u>https://medium.com/@prudhvi.gnv/imagenet-challenge-advancement-in-deep-learning-and-computer-vision-124fd33cb948</u>

Liefstingh, Menno. How NVIDIA enabled GPU-accelerated deep learning and revolutionised the AI field. 2022. <u>https://www.vantage-ai.com/blog/how-nvidia-enabled-gpu-accelerated-deep-learning-and-revolutionized-the-ai-field</u>

MetaAI. 200 languages within a single AI model: A breakthrough in high-quality machine translation. 2022. <u>https://ai.facebook.com/blog/nllb-200-high-quality-machine-translation/</u>

Woodie, Alex. Big Growth Forecatsted for Big Data. 2022. <u>https://www.datanami.com/2022/01/11/big-growth-forecasted-for-big-data/</u>

Connolly, Rachel. AlphaGo defeats world Go Champion KE Jie. 2017. <u>https://www.theneweconomy.com/technology/alphago-defeats-world-go-champion-ke-jie</u>

D'Avila Garcez, Artur. Neural-symbolic learning Part 2. ACAI2018. https://www.youtube.com/watch?v=KhkCjCmK8m0

Wolfram Mathematica. Molecular Graphs. <u>https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?</u> product=mathematica

Spencer, Jamie. 101 Social Networking Sites You Need To Know About In 2022. 2022. https://makeawebsitehub.com/social-media-sites/

MIAI-DAYS 2022