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Abstract1

Knowledge enhanced neural networks (KENNs) integrate prior knowledge in the2

form of logical formulae into an artificial neural network by adding knowledge3

enhancement (KE) layers to the network architecture. Previous results show that4

the model outperforms pure neural models as well as neural-symbolic models on5

small graphs but struggle to extend to larger ones. In this paper, we address the6

problem of knowledge enhancement of neural networks on large graphs and carry7

out experiments on the Open Graph Benchmark datasets (OGB). When dealing8

with large graphs, we show that neighbourhood explosion occurs and makes the9

full-batch training of the model unfeasible. To solve this problem, we first analyse10

the space complexity of the knowledge enhancement layers and propose a graph-11

specific mini-batching strategy to make it applicable to large-scale graphs. To show12

that our method is effective, we test our model on two datasets from the Open Graph13

Benchmark. To the best of our knowledge, this is the first approach that makes14

neural-symbolic methods such as KENN feasible to large graphs of arbitrary size15

and the first approach that uses datasets from OGB in a neural-symbolic context.16

1 Introduction17

Recently, remarkable progress has been made in various research domains thanks to deep learning18

and the application of artificial neural networks (NNs). The major strength of NNs is their ability to19

extract meaningful features from high-dimensional data without any expert knowledge. Despite their20

success, deep learning models are often criticised for their shortcomings in terms of interpretability,21

accountability and data-hungriness [1]. While deep learning approaches are mostly data-driven,22

symbolic AI models carry out logic-like reasoning steps over language-like representations such as23

relational data or graphs while being more data efficient and understandable by humans [2].24

In order to address the limitations of deep learning, the research field of neural-symbolic integration25

has emerged with the aim to combine neural approaches with methods from symbolic AI. The26

integration of sub-symbolic (neural) approaches and symbolic approaches has a large potential27

for the future of AI. Neural-symbolic AI not only paves the way towards the application of AI to28

situations with limited data. Also, neural-symbolic integration allows to jointly use different sources29

of information. This leads on the one hand to richer models and a wider range of applications of AI.30

On the other hand, it helps to tackle the black-box property of deep learning and avoid undesired31

effects (such as discrimination of social groups for example) by exploiting symbolic representations.32

Neural-symbolic integration research has the potential to improve the accuracy, data efficiency, and33

interpretability of the current state of the art in AI which has the potential to lead to new insights in a34

wide range of research domains. [1] [3] [4].35

Knowledge enhanced neural networks (KENN) [5] [6] is a neural-symbolic approach that stacks36

knowledge enhancement layers (KE layers) as additional layers on top of a NN. These layers modify37

the outputs of the so-called base neural network (base NN) with respect to some prior knowledge in38

the form of first-order logic (FOL) formulae. Both, the KE layers as well as the base NN are fully39

differentiable and are optimised jointly with backpropagation. The KE layers contain learnable clause40

weights that are modified during training and allow the model to be robust to wrong knowledge by41

setting the respective weights to zero. Furthermore, the clause weights indicate the importance of42

each clause which increases interpretability. [7]43
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While KENN was initially developed for multi-label classification [5], an extension of the model44

to relational domains has been proposed [7]. In order to evaluate the performance of KENN on45

relational data, the model is applied to a node classification task on the Citeseer dataset [8] where46

the goal is categorise scientific papers into topics. KENN allows to formulate assumptions on the47

papers (nodes) and citations (edges) in the graph as logical formulae in FOL and use them jointly48

with the numeric node features to solve the node classification task. Intuitively, when data is scarce49

the injection of the prior logic formulae is expected to be helpful guiding the training process. The50

first experiments with KENN show that it represents a promising neural-symbolic approach with an51

enormous potential for extension. The current scope of the results is however limited. The Citeseer52

dataset used in KENN [7] is rather small. Furthermore, no consensus on a split of the data in train,53

valid and test set exists, which makes it difficult to compare results across different approaches. In54

particular, a sufficiently large and informative dataset is needed to test complex models [9]. The Open55

Graph Benchmark (OGB) [9] is a collection of large-scale datasets from diverse domains designed56

for testing predictive models on large graphs. In addition to the datasets, baseline models as well as57

preprocessing and evaluation protocols are provided to facilitate comparability.58

In order to test KE layers in the context of large-scale datasets, we apply the model to the OGB59

datasets ogbn-arxiv and ogbn-products for node classification. For such datasets, the full-batch60

training of models can become unfeasible because the required memory capacity is large. Standard61

mini-batch stochastic gradient (SGD) is not directly applicable to graphs. Nodes are connected by62

edges and consequently not independent. Thus, the division into batches must ensure that the relevant63

information (such as a node and its neighbourhood) is available per batch. Furthermore, the number64

of required neighbours grows exponentially with the number of stacked relational KE layers and can65

exceed the memory capacity. This problem is referred as neighbourhood explosion in graph neural66

network domain [10]. For GNNs, various sampling methods [11] have been proposed to solve this67

problem.68

In this work, we study relational knowledge enhancement of neural networks for large graphs. In69

particular, we first analyse the space complexity of relational knowledge enhancement layers to70

identify the bottlenecks for scalability. In order to make knowledge enhancement feasible, we71

introduce a subgraph-oriented mini-batching method, inspired from GraphSAGE [12], which allows72

to control the neighbourhood explosion problem. We designed a prototype which allows to introduce73

KE layers on graph convolutional networks (GCNs) [13]. We show that our method is effective in74

node classification tasks applied to datasets from the Open Graph Benchmark (OGB) [9]. While75

most neural-symbolic approaches such as KENN are applied to small datasets or toy examples, this76

is to the best of our knowledge one of the first approaches that tackles the scalability challenges77

with large graphs and combines graph-specific mini-batching techniques to neural-symbolic methods.78

Furthermore, to our knowledge, this is the first neural-symbolic approach applied to OGB. We thereby79

present a way to address the lack of benchmark datasets in the neural-symbolic domain [4] [14] [7].80

Outline In Section 2 we present the architecture of KE layers and their adaption to relational data. In81

Section 3 we formulate the neighbourhood explosion problem for KE layers and propose restrictive82

neighbourhood sampling as mini-batching method in Section 4. We present our experiments in83

Section 5. In Section 6 gives a perspective on future work.84

2 Knowledge Enhanced Neural Networks85

Knowledge enhanced neural networks (KENN) [5] is a neural-symbolic approach that was recently86

extended to relational domains [7]. At its core, the KENN consists of two components that together87

form an end-to-end differentiable model. A base NN produces predictions and the knowledge88

enhancement layers refine these predictions based on a prior knowledge. The KENN takes two89

types of inputs: (1) graph-structured or relational data converted to a numerical form and (2) prior90

knowledge expressed as first-order logic (FOL) formulae.91

2.1 Graph Data92

A graph G = (V, E) consists of a set of nodes V and edges E connecting the nodes vi, vj ∈ V ,93

(vi, vj) ∈ E . The adjacency matrix A = [Aij ] with A ∈ R|V|x|V| describes edges between nodes.94

Each node vi is attributed with a feature vector h(0)
i ∈ Rd0 and a ground truth label vector yi ∈ Rm.95

In matrix notation, the feature matrix is H(0) ∈ Rn×d0 and y ∈ Rn×m.96
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2.2 Prior Knowledge97

In addition to G, some prior knowledge K is defined. It is specified as a set of |K| FOL clauses98

K = {c1, ..., c|K|} as disjunctions of literals.99

ci =

kci∨
j=1

lj (1)

Clause ci ∈ K contains kci literals. In our setting, the clauses refer to the m prediction classes. The100

logical language contains constants, variables and predicates. Unary predicates express properties of101

constants, while binary predicates describe relations between two constants.102

To give an example from the Citeseer dataset [7], let the unary predicate AI(x) describe that a103

scientific paper belongs to the document class AI (from the artificial intelligence domain) and let the104

binary predicate Cite(x, y) denote a citation between two papers x and y. The clause105

∀x, y : AI(x) ∧ Cite(x, y) −→ AI(y) (2)

describes that two papers belong to the same class AI if they cite each other. In this example, the106

intuition of KENN will be to classify papers into the same category, if they cite each other. At the107

present, the logical language of KENN does not explicitly represent quantifiers and assumes all108

clauses to be all-quantified. The implementation of fuzzy logic operators for ∀ and ∃ quantifiers as109

presented in [15], for example, is a future work.110

So far no uniform procedure for acquiring prior knowledge has been proposed and numerous ways111

are conceivable. Depending on the application, expert knowledge or general knowledge can be112

manually curated [5] or derived from widely available sources such as ontologies. Clauses can also113

be obtained from data, for example in the form of association rules [16]. In addition, assumptions114

can be formulated , which do not necessarily have to be fully satisfied.115

2.3 Knowledge Enhancement Architecture116

A brief overview of the KENN architecture given in the following. The base NN takes the input117

features H(0), transforms them in its hidden layers and produces preactivations z ∈ Rnxm in the118

last layer. In principal, any kind of NN that implements a function f : H(0) −→ z can be employed119

as a base NN. In this work, we consider a MLP [9] and a GCN [13] as base NN. The base NN in120

this experiments performs a node classification task and assigns document classes to each paper.121

Consequently, the output dimension of the base NN corresponds to the number of predicted document122

classes.123

z = fMLP(H
(0), θMLP)

124

z = fGCN(H
(0),A, θGCN)

Both models contain learnable parameters θ that are optimised during training.125

Several KE layers can be stacked on top of each other. Each KE layer updates the preactivations126

z of the base NN with respect to the satisfaction of K and applies a non-linear activation function127

σ(z) = ŷ in the last layer to obtain the final predictions. Each KE layer contains clause weights that128

are trained jointly with the parameters of the base NN. The clause weight wc of a clause c corresponds129

to the importance of a specific clause on the output. It is robust to wrong knowledge and can be set to130

zero.131

To be incorporated in a neural architecture, the knowledge has to be interpreted in a real-valued132

domain. Fuzzy logic [3] is applied to obtain truth values in a continuous interval of [0, 1]. The133

interpretation of the logic language in the real-valued domain is called grounding. Here, constants134

and variables are grounded to real-valued vectors and predicates to functions that project an input135

to real values between zero and one [4]. The preactivations z of the base NN are used as a numeric136

interpretation of unary predicates. T-conorm functions [17] map the truth values of grounded atoms to137

the truth value of a clause. To quantify the improvement of the satisfaction of a clause, the following138

t-conorm boost function (TBF) updates the initial predictions of the base NN.139

δwc
s (z) = wc · softmax(z) (3)

A module called clause enhancer (CE) implements the TBF for each clause. The changes introduced140

by all CEs are aggregated, added to z and given to the activation function. Various groundings of141
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a clause to constants are stored in a matrix where columns represent the predicates and rows the142

constants. Once instantiated, the CE works on several groundings G of a clause. More details on143

KENN can be found in [7] and [5].144

2.4 Knowledge Enhancement on Relational Data145

In case of relational data, not only unary but also binary predicates are considered. Some changes are146

made to the model in order to support relational data [7]. While the groundings of unary predicates can147

be represented as a matrix that contains the objects as rows and grounded predicates as columns, the148

keys of the binary predicates are two-dimensional. Consequently, binary predicates are represented as149

a matrix B that has as many rows as groundings of binary predicates and columns as unary predicates.150

To enhance clauses that contain binary predicates, all grounded predicates have to be presented151

together in one matrix on which the CE can operate. Hence, unary predicates are "binarized" by152

ignoring one component of the input.153

Given a unary predicate P (x) for example, it can be extended to two binary predicates PX(x, y)154

and PY (x, y). Considering the clause c : ¬AI(x) ∨ ¬Cite(x, y) ∨ AI(y) of Section 2.2 and the155

two groundings c[x/a, y/b] and c[x/b, y/c], the preactivation of both constants zAI(a) and zAI(b)156

have to be represented in the same matrix in order to calculate the enhancements. Consequently,157

the relational KE layer contains a join operator that joins binary predicates and the binarized unary158

predicates into one matrix M. After obtaining the changes δM, a group-by layer collects the changes159

that apply to the same grounded propositional variable and aggregates them. The accumulated160

changes can then be added to the preactivations of the previous layer.161

To give an example, a unary clause c : P1(x) ∨ P2(x) with P1, P2 ∈ KU can have several predicates162

that refer to only one variable. As a consequence, the updates given by Equation 3 for a node vi163

would be164

δwc
s (z(i,1)) =

ez(i,1)

ez(i,1) + ez(i,2)
(4)

In comparison, a binary clause contains unary and binary predicates and can refer to two different165

variables, for example: c = P1(x) ∧ P2(y) ∧ P3(x, y) where P1, P2 ∈ KU and P3 ∈ KB . In this166

case, the enhancement for vi of that clause (defined in Equation 3) is given by the following term167

δwc
s (z(i,1)) =

ez(i,1)

ez(i,1) + ez(j,2) + ez3(i,j)
(5)

where ez3(i,j) represents the preactivation of the binary predicate P3(x, y) for the grounding P3(i, j).168

In this setting [7], the citations between the papers are assumed to be known apriori and complete.169

Consequently, the groundings of the binary predicate Cite are set to a high positive value.170

In summary, for graph data the changes applied to a grounded predicate depends not only on the171

grounding of a constant but also on the groundings of constants related by binary predicates. In other172

words, not only the representation of a node itself from the previous layer is needed, but also the173

representation of neighbouring nodes to which the node is connected to by an edge.174

3 Formulation of the Scalability Challenges for Large Graphs175

The processing of large graphs is not only time-consuming but also demanding in terms of space176

requirements, particularly when GPUs are used where the memory capacity is limited. In full-batch177

training the input features H(0) ∈ Rn×d0 and the network parameters θ for L layers of a NN need178

to be stored. This results in a space complexity of O(nd0L + d0L). It depends on the size of the179

dataset n and leads rapidly to infeasibility when n is large.180

Mini-batch stochastic gradient descent (SGD)[10] is a widely used solution to this problem. With181

a batch size of b << n, the space complexity can be reduced to O(bd0L+ d0L) since the feature182

matrices for one batch are only of size Rb×d0 .183

3.1 Space Complexity in the Presence of Relational Data184

For relational knowledge enhancement, the unary predicates of linked nodes need to be encoded in185

the matrix M, as described in Section 2. Depending on the number of unary and binary predicates186
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|PU | and |PB | and the number of nodes |V|, the size of M results in R|V|2×(2·|PU |+|PB |). Here, |V|2187

considers all possible combinations of nodes in the graph to model the grounding False of a binary188

predicate. This would be the case if no edge between two nodes exists. Consequently, a KE layer189

in full-batch training has the space complexity O(|V|2 · (2|PU | + |PB |) + |K|) since M and the190

|K| clause weights need to be stored. Depending on the formulation of the prior knowledge, the191

number of considered edges in M can be reduced. Here, all clauses have the structure Class(x) ∨192

¬Class(y) ∨ ¬Cite(x, y). The clause is satisfied for all groundings in which Cite equals False,193

independently of the other predicates. Since this does not add additional information to the model,194

pairs of nodes that are not linked by the binary predicate Cite are not included in M. This reduces195

its dimension to R|E|×(2·|PU |+|PB |) and the space complexity drop to O(|E| · (2|PU |+ |PB |) + |K|).196

As for non-relational data, splitting the node set V into mini-batches of size b << n reduces the size197

of M per batch to Rb2×(2·|PU |+|PB |). The difficulty with graphs is their connectivity since linked198

nodes cannot be assumed to be independent. When a graph is split straightforwardly into mini-batches199

as with non-relational data, some node features that are required to join matrix M might belong to200

a different mini-batch and consequently be ignored. In that case, relevant information may be lost201

resulting in a poor learning process.202

Instead of batching the node set, the entire input graph G can be split into subgraphs203

G1(V1, E1), . . .GS(VS , ES). The subgraphs can be used as mini-batches to estimate the loss and204

calculate the gradients for the full graph. The amount of nodes needed for the KE updates depends205

on the number LKE of KE layers stacked. The first KE layer takes the preactivations z of the base206

NN as input. The enhancement of the preactivation zi of node vi by a binary clause requires the207

preactivations zj of the constants that co-appear in the groundings of the binary clause. In the graph,208

the groundings correspond to the preactivations of the first-order neighbourhood N 1(vi) of vi.209

When stacking a multiple KE layers, the relational enhancement recursively depends on the outputs210

of the previous KE layer. As a result, the enhancement of one node with LKE KE layers requires the211

LKE-step neighbourhood (NLKE (vi)) of this node in the graph. Its size depends not only on LKE212

but also on the connectivity of the graph. In the worst case, the required neighbourhood can result in213

the full graph N (vi) = V . In conclusion, the number of required neighbours grows exponentially214

with LKE .215

O
(
(|Vs| · degLKE )2 · (2|PU |+ |PB |) + LKE · |K|

)
(6)

The total space complexity of KENN (in conjunction with MLP as base NN) results in the following216

space complexity.217

O
(
(|Vs| · degLKE )2 · (2|PU |+ |PB |) + |VS |Ld0 + Ld2 + LKE · |K|

)
(7)

In the context of graph neural networks (GNN) [10], the exponential growth of the neighbourhood is218

referred as neighbourhood explosion [18]. Advanced mini-batching methods [11] have been proposed219

to make the application of GNNs to large graphs feasible. Since relational KE layers have structural220

analogies and are exposed to the same scalability challenges as GNNs, GNN-specific mini-batching221

techniques can be considered for relational KE layers.222

4 Advanced Mini-Batching for Relational Knowledge Enhancement223

In order to split a graph into subgraphs for mini-batch training, a trade-off between the subgraph224

size and the graph information loss has to be found. On the one hand, the subgraphs must be small225

enough to fit the memory requirements. On the other hand, a sufficient number of nodes and edges226

are requisite to approximate the training on the full graph.227

In this work, we propose restrictive neighbourhood sampling (RNS) inspired from GraphSAGE [12]228

[10]. While GraphSAGE samples neighbours per GNN layer, RNS samples complete subgraphs at229

the preprocessing stage. The number of neighbours per node is constrained by some parameters.230

They have to be chosen carefully in accordance with the available memory capacity and the topology231

of the graph. In the following, we present RNS (see also Algorithm 2) and analyse the resulting space232

complexity.233

RNS introduces a set of hyperparameters. The batch size b defines how many nodes to use as target234

nodes per subgraph. If b is chosen too large, the sampled graph might still exceed the available space235
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resources. The sampling depth l defines the depth of the neighbourhood taken into account. l should236

correspond to the number of relational KE layers. The sampling neighbour size ns defines how many237

neighbours are sampled per sampling depth. In the first step, the node set V is split into batches238

Vs of batch size b regardless of the edges. We obtain ⌊nb ⌋ + 1 batches. The last batch might have239

less than b nodes. We refer to these nodes as target nodes for each batch V0
s . In the following, ns240

first-order neighbours N 1(V0
s ) are sampled for the target nodes of each batch and appended to form241

the updated node set of the total batch V0
s ∪ V1

s \ {vi|vi ∈ V0
s ∩ V1

s }. Duplicate nodes are removed242

when a node is target and neighbouring node at the same time. The edges between the target nodes243

and all sampled neighbours are kept so that each batch correspond to a subgraph Gs = (Vs, Es) with244

s ∈ {1, . . . , ⌊nb ⌋+ 1}. To sample the second-order neighbours the algorithm iterates through the set245

of first-order neighbours. For each node in the set of second order neighbours,again n neighbours are246

sampled and appended. This procedure is repeated recursively until the sampling depth l is reached.247

A forward pass with KENN (see Algorithm 1) iterates through the subgraphs Gs and returns preacti-248

vations for all nodes in the batch. The preactivations of the neighbours are needed for the knowledge249

enhancement are not included in the calculation of the batch loss. If one node appears multiple times250

in several batches and contribute to the loss more than once, bias would be introduced. Only the251

preactivations of target nodes are used for the loss calculation per batch.252

4.1 Space Complexity for Restrictive Neighbourhood Sampling253

The space complexity of relational knowledge enhancement in conjunction with RNS depends on the254

parameter choice for l, b, ns and the graph topology. The node degree deg(vi) denotes the number of255

neighbours. For simplicity, we assume in the following notations that every node vi has the same256

degree deg. For a subgraph Gs, the edges and the node features need to be stored. The edges Es are257

defined as a two-dimensional index vector and can be neglected in the following. The space of the258

node features depends on the feature dimension d0 and the sampled nodes in the batch Vs. Since the259

feature dimension is assumed to be constant, the size of the node set is the critical component.260

The set of the nodes in a batch is composed of the target nodes and the sampled neighbours without261

duplicates.262

V0
s ⊔N 1

s (V0
s ) ⊔ . . . ⊔N l

s(V0
s ) =

l⊔
ℓ

N ℓ
s (Vs) (8)

If the complete neighbourhood per node is sampled, the total number of nodes in the batch is defined263

as follows.264

|Vs| = |V0
s |+ |N 1

s (V0
s )|+ . . .+ |N l

s(V0
s )|

= b · (1 + deg + deg2 + . . .+ degl).
(9)

When ns neighbours are randomly sampled from the l-order neighbourhood of each node, 9 is265

changed to266

|Vs| = b · (1 + ns + n2
s + . . .+ nl

s) (10)
By setting the parameters ns, l and b to constant values, the exponential growth of the sampled267

neighbourhood problem can be controlled and adjusted to fit the memory requirements.268

4.2 Information Loss with Restrictive Neighbourhood Sampling269

In comparison to the sampling of all relevant neighbours, RNS introduces the risk of loosing the270

information of nodes that are not sampled. This information loss can be quantified. To avoid that the271

batches get large when the graph is densely connected and deg is high, the sampling size ns restricts272

the neighbourhood size. We denote the information loss ω per sampling depth ℓ ∈ {1 . . . l} for node273

vi ∈ Vℓ
s and its sampled neighbourhood N ℓ

s (vi) as274

ω(vi, l) =

{
deg(vi)− ns if deg(vi) > ns

0 else
(11)

Overall, the information loss Ω(V, l, ns, b) of the sampling process for all nodes and layers can be275

combined to276

Ω(V, l, ns, b) = (deg − ns) + (deg2 − n2
s) + . . .+ (degl − nl

s) (12)
When the sampling size is fixed and deg > ns, we can see that the information loss grows exponen-277

tially with the constraint sampling depth.278
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4.3 Redundant Computations for Sampled Neighbours279

As defined in Algorithm 1, all preactivations of the neighbours are required to compute the preacti-280

vations of the target nodes. This means that the calculation of the preactivation of a node found in281

multiple batches is redundant. In particular, if the base NN is non-relational, the calculation of the282

output of the base NN will be reduplicated. How often the representation of a node is recalculated283

depends on the number of batches that include the node as a neighbour. The likelihood that a node284

will be sampled depends on the degree of the node itself, the degree of the neighbouring nodes and285

the choice of the sampling size. A way to increase the computational efficiency of KE layers would286

be to calculate the preactivations of the base NN in advance and join them for the respective batch,287

when required. The implementation of this extension is a future work.288

5 Experiments289

To the best of our knowledge, the relational KE layers have only been applied to the Citeseer dataset290

[19] [7]. Even though Citeseer is a frequently used citation graph, it is unsatisfactory in terms of291

quality and quantity [9]. It is not appropriate when complex NN models are used in conjunction with292

large-scale datasets. A common problem in neural-symbolic integration is the lack of appropriate293

benchmarks with significant datasets and prior knowledge. In principle, KE layers can be stacked on294

any kind of neural network architecture [7]. But so far, only results of KENN in conjunction with a295

MLP have been reported [7].296

In this work we extend the knowledge enhancement to large-scale graphs and show that it performs297

well on the ogbn-arxiv and obgn-products datasets from the Open Graph Benchmark [9]. This298

extension is based on a careful analysis of the space requirements for an knowledge enhanced model299

to make it scale. To this end, we stack relational KE layers on top of a graph convolutional neural300

network (GCN) [13] as base NN and analyse how a mini-batching strategy can be designed to enhance301

a GCN with prior knowledge. We show that OGB can not only be useful as a benchmark for GNNs302

but also for approaches from the neural-symbolic domain.303

We compare the performance of the four models GCN, MLP, GCN with KE layers (KE_GCN)304

and MLP with KE layers (KE_MLP) on the two datasets ogbn-arxiv and ogbn-products. OGB [9]305

provides challenging, diverse and realistic benchmarks to check for the scalability, the robustness and306

the reproducibility of machine learning models. It provides a unified evaluation protocol, application-307

specific splits, evaluation metrics and an automated end-to-end pipeline that makes it easy to compare308

state-of-the-art models. Both datasets have node features and homogeneous edges which makes them309

suitable for a node classification task. ogbn-arxiv is a citation graph and ogbn-products a purchase310

network. For more details on the datasets, see Section A.1.1 and A.2 of the Appendix.311

The prior knowledge required for the KE layers is derived manually as in [7]. The hypothesis is made312

that two documents belong to the same class when they cite each other. In context of ogbn-products,313

two products are supposed to belong to the same class if they are purchased together. Forty clauses314

are instantiated for each document class according to the following schema for ogbn-arxiv.315

∀x∀y :¬Class(x) ∨ ¬Cite(x; y) ∨ Class(y)

For ogbn-products the clauses are derived in the same way.316

∀x∀y :¬Class(x) ∨ ¬CoPurchased(x; y) ∨ Class(y)

As in [7] and as already described above, the edges and binary predicates are assumed to be known317

apriori. For this reason, the preactivation of the binary predicate Cite (or CoPurchased) is set to a318

high value. To reduce complexity, only pairs of nodes that are connected by edges are considered. For319

this knowledge, all pairs of nodes for which the binary predicate is False would be directly satisfied320

and do not add any information. In our experiments, the clause weights are initialized with a constant321

value (0.5).322

We build the models GCN and MLP according to the proposed architecture in [9]. For KE_MLP323

and KE_GCN we stack KE layers on the base NNs to modify the predictions. The MLP and GCN324

consist of three hidden layers with hidden dimension of 256, batch normalisation layers [20] and relu325

activation after each hidden layer. In MLP, the hidden layers are linear layers [21] and in GCN graph326

convolutional layers [22]. For all models, the logarithmic softmax function [21] is used as activation327

7
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of the last layer.328

LogSoftmax (xi) = log

(
exp (xi)∑
j exp (xj)

)
(13)

The loss is calculated by the negative log-likelihood function [21] which is the standard loss function329

for multi-class classification.330

l(θ) = −
n∑

i=1

(yi log ŷθ,i + (1− yi) log (1− ŷθ,i)) (14)

The performance of the models is evaluated using the accuracy. We compare the models on both331

datasets in mini-batch SGD with RNS. All experiments are performed in transductive training mode.332

The edges between nodes from different subsets are also sampled in the training, but only the labels333

of the training nodes are available. The details on the hyperparameters used in the models are given334

in Section A.5 of the Appendix.335

5.1 Implementation336

Our implementation and experiments are publicly available on GitLab1. We use PyTorch [21] and337

modules from the graph learning library PyTorch Geometric [22]. The Weights and Biases application338

[23] is used to monitor the experiments. For our computations we use a machine running an Ubuntu339

20.4, equipped with an Intel(R) Xeon(R) Silver 4114 CPU 2.20GHz processor, 192G of RAM and340

Nvidia GPU Quadro P5000.341

5.2 Results342

We tested the knowledge enhancement of an MLP and a GCN on the datasets ogbn-arxiv and ogbn-343

products with RNS. The results on ogbn-products can be found in Table 1 and on ogbn-arxiv in Table344

2. While the full-batch training for ogbn-arxiv is still feasible, full-batch training on ogbn-products345

results in an out-of-memory error (see Table 3 and 4 in the appendix). For both datasets, KE_MLP346

significantly outperforms the MLP. (P-values of one-sided t-test2: 7.21e− 17 on ogbn-products and347

1.37e− 06 for ogbn-arxiv). In case of KE_GCN no major improvement can be denoted. (P-values348

of two-sided t-test3: 0.2493 on ogbn-products and 0.2277 for ogbn-arxiv.) The p-values do also not349

allow to reject the hypothesis of identical performance.350

Overall, our results confirm the results obtained by [7] on the Citeseer dataset where KENN in351

conjunction with an MLP outperforms the MLP. In this work we obtain the results at scale. For the352

knowledge enhancement of GCN, the techniques introduced in this work allow also the algorithms353

to scale for large datasets. However, no significant prediction improvement has been observed yet.354

Though, the algorithms introduced here are at least feasible in the sense that they avoid neighbourhood355

explosions. Several hypotheses support this observation. The GCN can handle relational information356

and is therefore a more complex model compared to the MLP which only relies on node features.357

Consequently, a smaller performance gain is expected from the knowledge enhancement of a GCN in358

comparison to a MLP. Furthermore, each KE layer introduces clause weights as learnable parameters.359

In the case of ogbn-arxiv 40 logical formulae are yielded to be satisfied. With three KENN layers360

this leads to 120 additional training parameters. Under these circumstances overfitting might occur.361

Furthermore the prior knowledge which is only an assumption concerning the relationship between362

document class and citations. If this relationship is not present in the dataset, the KE layer might363

introduce additional noise. In order to better investigate the conjunction of graph neural networks364

with KE layers, further experiments with different sets of logical formulae and other datasets are part365

of a further work.366

1https://gitlab.inria.fr/tyrex/scalable_ke
2One-sided t-test: H0 : µMLP == µKE_MLP, H1 : µMLP < µKE_MLP
3Two-sided t-test: H0 : µGCN == µKE_GCN, H1 : µGCN ̸= µKE_GCN
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RNS on ogbn-arxiv
avg train
accuracy

avg validation
accuracy

avg test
accuracy (stdv) avg epoch time

MLP 0.5515 0.5370 0.5206 (0.0314) 0.09
KE_MLP 0.6395 0.5950 0.5701 (0.0067) 2.77
GCN 0.6306 0.5925 0.5473 (0.0071) 1.02
KE_GCN 0.6150 0.5781 0.5373 (0.0242) 2.94

Table 1: Results of RNS training on ogbn-arxiv: Parameter setting in Table 6, SectionA.5).

RNS on ogbn-products
avg train
accuracy

avg validation
accuracy

avg test
accuracy (stdv) avg epoch time

MLP 0.7740 0.7433 0.5970 (0.0039) 4.17
KE_MLP 0.8250 0.7988 0.6416 (0.0029) 6.5
GCN 0.8835 0.8786 0.7224 (0.0051) 4.13
KE_GCN 0.8807 0.8761 0.7144 (0.0041) 6.78

Table 2: Results of RNS training on ogbn-products. Parameter setting in Table 7, Section A.5.

6 Conclusion and Future Work367

In this paper, we studied how to achieve relational knowledge enhancement for large graphs. We368

first analysed the space complexity of relational knowledge enhancement in order to avoid the369

neighbourhood explosion introduced by the stacking of multiple enhancement layers. Specifically,370

we introduced restrictive neighbourhood sampling which allows to control the space requirements of371

mini-batches. We built an implementation which allows to apply relational knowledge enhancement372

layers to various GNN models. We show that our method is effective to enhance the predictions of373

the compared base NN MLP for the datasets ogbn-arxiv and ogbn-products on a multi-class node374

classification task. This work is to the best of our knowledge the first application of KENN to a375

large-scale benchmark from the graph neural network domain and shows that the OGB benchmark376

is useful in a neural-symbolic context and might help to fill the lack of benchmark datasets in the377

neural-symbolic domain. As explained earlier, for the enhancement of a GCN further investigations378

related to the composition of the prior knowledge and the hyperparameter set and are a future work.379

Moreover, we intend to explore knowledge enhancement on heterogeneous graphs (Graphs with380

multiple edge and node types). Such graphs are particularly challenging since they have node and381

edge features of different shapes and are likely to introduce more space and time complexity. Another382

line of work is to make relational knowledge enhancement layers more efficient and reduce their run383

time.384
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A Appendix460

A.1 Data Source461

In this work, we make use of the datasets ogbn-arxiv and ogbn-products. Detailed information and462

public access to the data source is given in [24] and on the OGB webpage4.463

A.1.1 ogbn-arxiv464

ogbn-arxiv [9] is a citation graph extracted from the scientific platform Arxiv. Each node in the graph465

represents a research paper of the computer science domain. Directed edges amongst the papers466

indicate citations. Each paper has a 128-dimensional feature vector that is obtained with a word2vec467

[25] model from the text in the title and the abstract. The documents in the graph belong to one of 40468

classes and the dataset is split into training, validation and test set based on the publication dates (ratio469

54/18/28). On ogbn-arxiv a multi-class node classification task can be conducted in a supervised470

learning setting since the ground truth classes are provided. The proposed metric to evaluate the471

model performance is the accuracy. The dataset has the following statistics:472

• Number of nodes : 169343473

• Number of edges: 1166243474

• Avg node degree: 13.7475

A.2 ogbn-products476

ogbn-products [9] is a Amazon purchasing network that contains products sold on the platform477

Amazon. The products are represented as nodes in the graph. Two nodes are linked by an edge if478

the respective products were purchased together. The graph is undirected. The dataset contains node479

features that are derived from the product descriptions and encoded as bag-of-word vectors. The480

dataset is split into training, validation and test set according to the sales rank (ratio: 8/2/90). The481

task is to predict one of 47 product categories (multi-class node classification).482

• Number of nodes: 2.449.020483

• Number of edges: 61.859.140484

• Average node degree: 50.5485
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Algorithm 1 Forward Propagation with subgraphs sampled with RN Sampler .
Input

Training Graph G(V, E)
Sampling Parameters

Output
Training loss per epoch

1: G1,G2, . . . ,Gs ← Sampled Subgraphs (RNS in Algorithm 2).
2: for i ∈ {1, . . . , S} do
3: {ŷv|v ∈ Vi} ← Forward propagation for all nodes
4: Backward Propagation loss on first b nodes in {ŷv|v ∈ Vi}
5: end for

Algorithm 2 Restrictive neighbourhood sampling
Input

Training Graph G(V, E)
Sampling Parameters: batch size b, sampling depth l, sampling size ns

Output
List of sampled subgraphs (batches): G1(V1, E1), . . . ,GS(VS , ES)

1: V1,V2, . . . ,VS ← target node sets of size b, sampled without replacement from V . ▷ (Last batch
might be smaller than b)

2: for i ∈ {1, . . . , S} do
3: for ℓ ∈ {1, . . . , l} do
4: N ℓ(Vi)← sample randomly ns ℓ-order neighbours for each node in Vi
5: Vi ← Vi ∪N ℓ(Vi) ▷ append and remove duplicated nodes
6: end for
7: end for

A.3 Algorithms486

A.4 Full-Batch Training Results487

Full-batch training on ogbn-arxiv
avg train
accuracy

avg validation
accuracy

avg test
accuracy (stdv) avg epoch time

MLP 0.5852 0.5635 0.5403 (0.0061) 0.065
KE_MLP 0.6127 0.6000 0.5713 (0.1063) 0.768
GCN 0.6304 0.5924 0.5273 (0.019) 0.182
KE_GCN 0.5911 0.5647 0.4978 (0.0205) 0.888

Table 3: Results of full-batch training on ogbn-arxiv. (Parameter setting in Table 5, Section A.5).

Full-batch training on ogbn-products
avg train
accuracy

avg validation
accuracy

avg test
accuracy (stdv) avg epoch time

MLP OOM OOM OOM -
KE_MLP OOM OOM OOM -
GCN OOM OOM OOM -
KE_GCN OOM OOM OOM -
Table 4: Full-batch on ogbn-products results in OOM error, see also [18]

4https://ogb.stanford.edu/
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A.5 Hyperparameters488

Parameters of Full-batch Training on ogbn-arxiv
Model MLP GCN KE_GCN KE_MLP
Binary Preactivation 500.0 500.0 500.0 500.0
Dropout 0.5 0.5 0.5 0.5
Epochs 600 600 600 600
Early Stopping Enabled True True True True
Early Stopping δ 0.001 0.001 0.001 0.001
Early Stopping Patience 10 10 10 10
Evaluation Steps 10 10 10 10
Hidden Channels 256 256 256 256
Learning Rate 0.01 0.01 0.01 0.01
Number of KE layers - - 3 3
Number of Hidden layers (base
NN)

3 3 3 3

Runs 10 10 10 10
Table 5

RNS on ogbn-arxiv
Model MLP GCN KE_GCN KE_MLP
Batch Size 10000 10000 10000 10000
Sampling Depth - 3 3 3
Sampling Size - 10 10 10
Binary Preactivation 500.0 500.0 500.0 500.0
Dropout 0.5 0.5 0.5 0.5
Epochs 300 100 100 300
Early Stopping Enabled True True True True
Early Stopping δ 0.001 0.001 0.001 0.001
Early Stopping Patience 10 10 10 10
Evaluation Steps 10 10 10 10
Hidden Channels 256 256 256 256
Initialisation of KE layers - - 0.5 0.5
Initialisation of GC layers - random (glo-

rot) [26]
- random (glo-

rot)
Initialisation of linear layers random

uniform
random
uniform

random
uniform

random
uniform

Learning Rate 0.01 0.01 0.01 0.01
Number of KE layers - - 3 3
Number of Hidden layers (base
NN)

3 3 3 3

Runs 10 10 10 10
Table 6

13



Scalable Knowledge Enhancement of Graph Neural Networks

RNS on ogbn-products, sampling depth=1, 1 KE layer, batch size 10.000
Model MLP GCN KE_GCN KE_MLP
Batch Size 10.000 10.000 10.000 10.000
Sampling Depth - 1 1 1
Sampling Size - 10 10 10
Binary Preactivation 500.0 500.0 500.0 500.0
Dropout 0.5 0.5 0.5 0.5
Epochs 300 300 300 300
Early Stopping Enabled True True True True
Early Stopping δ 0.001 0.001 0.001 0.001
Early Stopping Patience 10 10 10 10
Evaluation Steps 10 10 10 10
Hidden Channels 256 256 256 256
Initialisation of KE layers - - 0.5 0.5
Initialisation of GC layers - random (glo-

rot) [26]
- random (glo-

rot)
Initialisation of linear layers random

uniform
random
uniform

random
uniform

random
uniform

Learning Rate 0.01 0.01 0.01 0.01
Number of KE layers - - 1 1
Number of Hidden layers (base
NN)

3 3 3 3

Runs 10 10 10 10
Table 7
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