

To Line van den Berg

Abstract

Graph-structured data has gained significant attention in recent years due to its ability

to encode relationships between entities, making it a rich data structure capable of rep-

resenting complex patterns, long-chain dependencies, and cyclical structures. However,

graph-structured data, such as knowledge graphs, presents significant challenges that must

be addressed to fully unlock its potential. Since graphs are often large, partly unstructured,

and incomplete, algorithms designed for graphs need to efficiently process sparse data.

In parallel, AI research has seen a surge in the development of deep learningmethods, while

symbolic methods have reached a level of stability with fewer noticeable breakthroughs.

Nonetheless, the explainability of symbolic methods, which are based on logic and prior

knowledge, has the potential to complement the strengths of sub-symbolic methods in

pattern matching, robustness, and scalability. As a result, research on neuro-symbolic

methods has gained attention, aiming to unify symbolic and sub-symbolic AI approaches.

This thesis explores how neuro-symbolic methods can be applied to graph-structured data

to solve reasoning tasks, such as knowledge graph completion, more efficiently and reliably.

The primary focus is on how prior knowledge, such as ontologies, can be leveraged to

enhance the performance of purely sub-symbolic methods. First, this thesis investigates

how prior knowledge can be integrated into a graph neural network through differentiable

neural layers based on fuzzy logic. Specifically, it examines the scalability and applicability

of this technique across different types of graphs. Second, a neuro-symbolic method

is proposed that injects knowledge into knowledge graph embeddings by integrating a

semantic reasoning engine.

iii

Résumé

Les données structurées sous forme de graphes, telles que les graphes de connaissances,

ont attiré l’attention ces dernières années en raison de leur capacité à encoder les relations

entre les entités, ce qui en fait une structure de données riche capable de représenter

des modèles complexes, des dépendances à longue chaîne et des structures cycliques.

Cependant, les données structurées par des graphes posent quelques difficultés majeures

qu’il faut surmonter pour en exploiter le potentiel. Les graphes étant souvent de grande

taille, non structurés et incomplets, les algorithmes appliqués aux graphes doivent être

capables de traiter efficacement des données éparses et non structurées en grille.

Parallèlement, la recherche en IA a connu ces dernières années une explosion du développe-

ment des méthodes d’apprentissage profond, tandis que les méthodes symboliques ont été

reléguées à l’arrière-plan. Néanmoins, la capacité d’explication des méthodes symboliques

basées sur la logique et les connaissances préalables peut compléter la force des méthodes

sub-symboliques en matière de correspondance des formes, de robustesse et d’évolutivité.

C’est pourquoi la recherche sur les méthodes neuro-symboliques a attiré l’attention, dans

le but d’unifier les méthodes symboliques et sub-symboliques de l’IA.

Cette thèse étudie comment les méthodes neuro-symboliques peuvent être employées

sur des données structurées en graphe afin que des tâches de raisonnement telles que

la complétion de graphes de connaissances puissent être résolues de manière plus effi-

cace et plus fiable. L’accent est mis en particulier sur la question de savoir comment les

connaissances préalables, par exemple sous la forme d’ontologies, peuvent être exploitées

pour améliorer le comportement des méthodes purement sub-symboliques. On étudie

comment les connaissances préalables peuvent être intégrées dans un réseau neuronal par

le biais de couches neuronales différentiables basées sur la logique floue. L’extensibilité et

l’applicabilité de cette technique à différents types de graphes sont notamment examinées.

En outre, une méthode neuro-symbolique est proposée pour injecter des connaissances

dans les graphes de connaissances en intégrant un moteur de raisonnement sémantique.

v

Acknowledgements

This PhD would not have been possible without all the help and guidance I have received

over the past few years. First of all, I would like to thank my supervisors, Nabil and Pierre,

for their support throughout my thesis. Thank you for trusting me and giving me space

for my ideas, while always having an open ear for my questions. I would also like to

thank the entire Tyrex team. Thank you for making INRIA such a nice place to work. I

always felt welcome in the team and enjoyed our conversations during coffee and lunch

breaks. Special thanks to Amela and Sarah for their support and advice, and to my office

partner Laurent (without whose support in the form of Madeleines I would not have got

through the occasional afternoon slump). Lucia, thank you for your advice on this thesis

and, more generally, on finding a path in research. I would also like to thank Damien, my

CSI expert, for his valuable feedback during my thesis. Thanks also to Jérôme Euzenat for

working with me on my first paper and giving me the courage that a reproducibility paper

can make it to an A* conference. Thanks to the members of the jury for their evaluation

and feedback. I would also like to thank the University of Grenoble Alpes and the MIAI

(ANR-19-P3IA-0003) for funding my research.

My time in Grenoble would not have been the same without the company of so many

wonderful people. Those who woke up with me at 5am to ski before work on untouched

powder and freshly groomed slopes. Those who have hiked, bivouacked and bikepacked

every pass and peak in the region: A big shout out to Aurélien, Annet, Denis, Charlotte,

Ronan, Jonas, Caro, Yann, Josh, Benoit, Elias, Pauline, ... and simply everyone who

considers themselves part of the Grelous crew! Johanna, thank you for proving that

camping at -15°C is possible and for your patience with me climbing! Special thanks to my

roommate Joseba, who not only shared a flat with me, but also countless hours on the bike

saddle and on the skis. Carla, starting bikepacking together was an adventure in itself,

and our yearly trip has been the constant in my bikepacking life ever since - thank you for

that! To Caro Meyer, even though you’ve been far away, you’ve always been there for me.

Thank you for all your personal advice and for being a constant source of support.

My heartfelt thanks to my flatmate Line. I miss you and wish I could have spent more

time with you. You were not only the one who encouraged me to start a PhD. It’s also

your voice I hear when I need someone to tell me I can do it.

A big thank you to my family, especially my sister Clara and my mum and dad for making

it all possible. You are the reason I have been able to pursue any degree I wanted. You

have taught me to never give up and to always support the decisions that have brought

me here. Thank you for being not only my parents, but also my friends. I am so glad that

vii

you were convinced by the charm of France and visited me regularly, and even more so

that you cycled the epic "grands cols" with me.

Finally, a big thank you to my partner Fabian. Thank you for being by my side, supporting

me at every step of this journey and teaching me countless things I’m proud to have

learned, such as cross-country skiing technique, bike mechanics, ski touring conversions,

setting up our own server, how to pronounce "Charmant Som", making cappucchino with

latte art... and I’m sure a complete list wouldn’t fit on a single page. I’m so grateful for all

the moments and adventures we have shared together.

viii

Publications

Parts of this research have been disseminated through publications and presentations at

the following academic conferences [206, 207, 208]:

• Reproduce, Replicate, Reevaluate.The Long but SafeWay to ExtendMachine Learning

Methods. Luisa Werner, Nabil Layaïda, Pierre Genevès, Jérôme Euzenat, Damien

Graux. AAAI 2024 - The 38th Annual AAAI Conference on Artificial Intelligence,

Feb 2024, Vancouver, Canada

• Knowledge Enhanced Graph Neural Networks for Graph Completion. Luisa Werner,

Nabil Layaïda, Pierre Genevès, Sarah Chlyah. The 10th IEEE International Confer-

ence on Data Science and Advanced Analytics, Oct 2023, Thessaloniki, Greece

(This work has also been presented at the 1st International Workshop on Knowledge-
Based Compositional Generalization (KBCG). The 32nd International Joint Conference
On Artificial Intelligence. August 2023. Macao. S.A.R.)

• Neuro-Symbolic Integration for Reasoning and Learning onKnowledge Graphs. Luisa

Werner. AAAI 2024 - The 38th Annual AAAI Conference on Artificial Intelligence,

Feb 2024, Vancouver, Canada. Doctoral Consortium.

ix

Software

• Reproduce Replicate Reevaluate. The Long but SafeWay to Extend Machine Learning

Methods.

https://gitlab.inria.fr/tyrex-public/reproducibility-aaai24

• Knowledge Enhanced Graph Neural Networks (KeGNN).

https://gitlab.inria.fr/tyrex-public/kegnn

• Knowledge Enhanced Neural Networks on Large-scale Graphs.

https://gitlab.inria.fr/tyrex-public/scalable_ke

• RuleKGE. Learning Rule-Injected Knowledge Graph Embeddings on Incomplete

Knowledge Graphs.

https://gitlab.inria.fr/tyrex-public/rulekge

xi

https://gitlab.inria.fr/tyrex-public/reproducibility-aaai24
https://gitlab.inria.fr/tyrex-public/kegnn
https://gitlab.inria.fr/tyrex-public/scalable_ke
https://gitlab.inria.fr/tyrex-public/rulekge

Contents

Abstract iii

Résumé v

I. Introduction 1

II. State of the art 7

1. Preliminaries 9
1.1. Graph-structured Data . 9

1.1.1. Tasks on Graphs . 11

1.1.2. Knowledge Graph . 12

1.1.3. Opportunities . 14

1.1.4. Challenges . 14

1.2. Logic . 15

1.2.1. Propositional Logic . 15

1.2.2. First-order Logic . 17

1.2.3. Fuzzy Logic . 18

1.2.4. Description Logics . 19

2. Symbolic Reasoning 23
2.1. Logic Programming . 23

2.2. Probabilistic Logic Programming . 24

2.3. Inductive Logic Programming . 25

2.4. Limitations . 27

3. Sub-symbolic Reasoning 29
3.1. Knowledge Graph Embeddings . 29

3.1.1. Prominent Knowledge Graph Embedding Methods 30

3.1.2. Loss Function . 33

3.1.3. Negative Sampling . 34

3.1.4. Evaluation . 35

3.1.5. Model Expressiveness and Inductive Capacity 36

3.1.6. Comparison of Knowledge Graph Embedding Methods 37

3.1.7. Limitations . 38

xiii

Contents

3.2. Graph Neural Networks . 39

3.2.1. Graph Convolutional Networks 40

3.2.2. Graph Attention Networks . 41

3.2.3. Relational Graph Neural Networks 42

3.2.4. Neural Knowledge Graph Embeddings 43

3.2.5. Limitations . 43

4. Neuro-Symbolic Reasoning 45
4.1. Desiderata of Neuro-symbolic AI . 47

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data . 48

4.2.1. Neural Probabilistic Programming 48

4.2.2. Logic Tensor Networks . 51

4.2.3. Knowledge Enhanced Neural Networks 55

4.2.4. Conclusion . 60

4.3. Neuro-Symbolic Reasoning on Graphs 60

4.3.1. Rule Learning . 61

4.3.2. Knowledge-driven Graph Augmentation 61

4.3.3. Knowledge as Constraints on the Embedding Space 62

4.3.4. Knowledge as Regularization Terms in the Loss Function 63

4.4. Summary and Perspective . 65

III. Contribution 69

5. Reproducibility Study on Knowledge Enhanced Neural Networks 73
5.1. Reproducibility in Machine Learning . 73

5.2. Experiments with Knowledge Enhanced Neural Networks 75

5.3. Methodology . 76

5.4. Evaluation Criteria . 77

5.5. Reproduction . 78

5.5.1. Pitfalls and Workarounds . 78

5.5.2. Results . 79

5.5.3. Lessons Learned . 79

5.6. Replication . 80

5.6.1. Pitfalls and Workarounds . 81

5.6.2. Results . 81

5.6.3. Lessons Learned . 82

5.7. Reevaluation . 83

5.7.1. Results . 83

5.7.2. Lessons Learned . 85

5.8. Conclusion and Outlook . 85

6. KeGNN: Knowledge Enhancement of Graph Neural Networks 87
6.1. Method . 88

6.1.1. Graph-structured Data . 88

xiv

Contents

6.1.2. Prior Knowledge . 89

6.1.3. Fuzzy Semantics . 90

6.1.4. Model Architecture . 91

6.2. Experimental Evaluation . 94

6.2.1. Datasets . 95

6.2.2. Prior Knowledge . 95

6.2.3. Implementation . 95

6.2.4. Results . 95

6.2.5. Exploitation of the Graph Structure 96

6.2.6. Robustness to Incorrect Knowledge 98

6.2.7. Clause Weight Learning . 98

6.3. Limitations . 101

6.4. Conclusion and Outlook . 102

7. Knowledge Enhancement on Large Graphs 103
7.1. Problem Statement for Knowledge Enhancement on Large Graphs 104

7.1.1. Memory Requirements of a Knowledge Enhancement Layer . . . 104

7.1.2. Multiple Knowledge Enhancement Layers 105

7.2. Mini-batch Gradient Descent on Graphs 106

7.3. Restrictive Neighbourhood Sampling . 108

7.4. Experimental Evaluation . 111

7.4.1. Datasets . 111

7.4.2. Prior Knowledge . 112

7.4.3. Hyperparameters and Experiment Setting 112

7.4.4. Implementation . 113

7.4.5. Results . 113

7.5. Limitations and Perspectives . 115

7.6. Conclusion . 115

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete
Knowledge Graphs 117
8.1. Incomplete Knowledge Graphs . 118

8.2. Method . 119

8.2.1. Reasoning Engine . 120

8.2.2. Reasoning with Positive Rules . 122

8.2.3. Reasoning with Negative Rules 124

8.2.4. Training and Reasoning . 126

8.3. Experimental Evaluation . 128

8.3.1. Dataset . 129

8.3.2. Rules . 130

8.3.3. Implementation . 130

8.3.4. Analysis of the Reasoner . 132

8.3.5. Positive Reasoning . 134

8.3.6. Negative Reasoning . 136

8.3.7. Zero-shot Learning . 139

xv

Contents

8.3.8. Reasoning with Intermediate Concepts 140

8.4. Limitations . 141

8.5. Conclusion and Outlook . 143

9. Conclusion 145
9.1. Summary of Contribution . 145

9.2. Perspectives and Future Directions . 146

Bibliography 147

A. Appendix 167
A.1. Experimental Details of Knowledge Enhancement of Graph Neural Networks 167

A.2. Experimental Details of Knowledge Enhancement on Large-Scale Graphs 168

xvi

List of Figures

1.1. Directed Graph . 9

1.2. Attributed Graph . 10

1.3. Heterogeneous Graph . 11

1.4. Inductive and Transductive Learning . 12

1.5. Knowledge Graph . 13

1.6. Ontology . 20

2.1. Problog. Burglary Example . 25

3.1. TransE, TransH and RotatE . 30

3.2. BoxE . 32

3.3. DistMult and QuatE . 33

3.4. Graph Convolutional Network . 40

3.5. Graph Attention Network . 41

3.6. Relational Graph Neural Network . 42

4.1. Neuro-Symbolic AI . 45

4.2. Schematic illustration of ways to integrate knowledge with neural net-

works for general neuro-symbolic frameworks. 48

4.3. Scallop. Kinship Reasoning Example . 51

4.4. LTN. MNIST Addition Example . 52

4.5. LTN. Smoker-Friends-Cancer Example (1) 54

4.6. LTN. Smoker-Friends-Cancer Example (2) 54

4.7. KENN. Architecture . 56

4.8. KENN. Smoker-Friends-Cancer Example 59

4.9. KENN. Join Layer . 59

4.10. KALE. Embeddings by Jointly Modeling Knowledge And Logic 63

4.11. JOIE. Joint Embedding of Instances and Ontological Concepts 64

4.12. Outline of the Contribution . 71

5.1. Overview of the Reproducibility Study 76

5.2. Pipeline of Extending Machine Learning Methods 86

6.1. Citation Graph Example . 88

6.2. KeGNN. Architecture . 91

6.3. KeGNN. Accuracy vs. Node Degree . 97

6.4. KeGNN. Accuracy vs. Ratio of Misleading First-order Neighbors 99

6.5. KeGNN. Clause Weights vs. Clause Compliance 99

xvii

List of Figures

6.6. KeGNN. Clause Compliance during Training 100

7.1. Neighbourhood Explosion . 105

7.2. Mini-batch Gradient Descent on Graph Data 107

7.3. Restrictive Neighbourhood Sampling. Example Graph 110

8.1. Incomplete Knowledge Graphs . 119

8.2. Positive Rules and Facts. Example . 122

8.3. Negative Rules and Facts. Example . 125

8.4. RuleKGE. Overview . 127

8.5. Relations in Family Dataset . 129

8.6. RuleKGE. Positive Programs . 131

8.7. RuleKGE. Negative Programs . 131

8.8. RuleKGE. Inferred Facts, Batch Size and Reasoning Time 132

8.9. RuleKGE. Number of Inferred Facts per Relation. Hierarchy Rules 133

8.10. RuleKGE. Redundant Facts. Inversion Rule Set 133

8.11. RuleKGE. Link Prediction Results. Reasoning with Intermediate Concepts 140

8.12. RuleKGE. Intermediate Concept Rule Sets 141

8.13. RuleKGE. Facts Inferred with Intermediate Concept 142

xviii

List of Tables

1.2. Description Logics and First-order Logics 16

1.3. T-norm Functions . 19

3.1. Inductive Capacity of Knowledge Graph Embeddings 37

3.2. Complexity of Knowledge Graph Embeddings 37

4.1. Symbolic vs. Sub-symbolic AI . 46

4.2. Summary of Neuro-symbolic Methods . 65

5.1. Overview of the Steps Reproduce, Replicate and Reevaluate 74

5.2. Reproduction Results . 78

5.3. Hyperparameters in the Initial Experiment 80

5.4. Replication Results . 82

5.5. Reevaluation Results on the Cora Dataset 84

5.6. Reevaluation Results on the Pubmed Dataset 84

5.7. Summary of the Lessons Learned . 85

6.1. Overview of the Citeseer, Cora, PubMed and Flickr datasets 94

6.2. KEGNN. Node Classification Results on Cora, CiteSeer, PubMed and Flickr 96

6.3. KeGNN. Runtimes on the Citeseer Dataset 96

7.1. Overview of the ogbn-arxiv and ogbn-products Datasets 112

7.2. Results with Full-batch training on ogbn-arxiv and ogbn-products 113

7.3. Results with RNS Training on ogbn-arxiv and ogbn-products 114

8.2. Frequency of Facts and Relations in the Family Dataset 130

8.3. RuleKGE. Parameters, Embedding Dimensions and Number of Parameters

for Knowledge Graph Embeddings . 134

8.5. RuleKGE. Link Prediction Results. Symmetry Rule Set 135

8.7. RuleKGE. Link Prediction Results. Hierarchy Rule Set 136

8.9. RuleKGE. Link Prediction Results. Inversion Rule Set 137

8.11. RuleKGE. Link Prediction Results. Composition Rule Set 138

8.13. RuleKGE. Link Prediction Results. Antisymmetry Rule Set 138

8.15. RuleKGE. Link Prediction Results. Mutual Exclusion Rule Set 139

8.17. RuleKGE. Link Prediction Results. Zero-shot Reasoning 139

8.19. RuleKGE. Link Prediction Results. Intermediate Concept Reasoning . . . 142

A.1. KeGNN. Hyperparameter for PubMed and Flickr 168

A.2. KeGNN. Hyperparameters for Citeseer and Cora 169

xix

List of Tables

A.3. Hyperparameters for Full-batch Training on ogbn-arxiv 169

A.4. Hyperparameters for RNS Training on ogbn-arxiv 170

A.5. Hyperparameters for RNS Training on ogbn-products 170

xx

Part I.

Introduction

1

Introduction

Graph-structured data is ubiquitous in various real-world applications such as e-commerce,

natural sciences and web search engines. In essence, graphs connect nodes through

edges, thus expressing relational information between entities. Graphs can be seen as a

generalisation of other data formats, such as images and language. In contrast, they do not

have any structural regularities. This makes them a powerful and versatile data structure

for capturing dependencies in an extensible format.

In particular, knowledge graphs encode information as a set of facts of the form (head,
relation, tail) which express the interaction between two entities through a relation. For

example, sellers and users on online marketplaces in an e-commerce network can be

considered as entities and their transactions as relations, e.g. (userA, buys, productB).
Graphs differ not only in the type of information they encode, but also in their format and

size. In some graphs, nodes or edges are enriched with feature information, for example in

the form of text or image data. In addition, graphs can be described by an ontology, which

contains rules that the facts in the graph should follow.

However, graphs also pose significant challenges. First, they are often extracted automati-

cally from multiple data sources with limited human intervention. As a result, noise and

errors from real-world data can be introduced into the resulting graph, leading to incorrect

facts. Second, graphs are often incomplete. The incompleteness may not only be due to

the extraction process, but may also result from the sparse structure of graphs. Knowledge

graphs typically store only information that is known to be true. False facts are usually

not stored explicitly. Storing all facts about a world would result in a large number of facts

with potentially redundant information. As a result, it is unclear whether unspecified facts

are missing or false.

Given the ubiquity of graph structures, several research areas are actively exploring

techniques from symbolic AI and deep learning to exploit them. Tasks of interest are for

example information retrieval, question answering, or link prediction. First, symbolic AI

uses reasoning techniques to infer new facts or generate proofs for queries. Symbolic

AI approaches are based on symbolic representations of knowledge, such as in logic

programming. These methods typically assume that the facts in the graph are true and do

not consider uncertainty or misinformation. Despite being interpretable, reasoning on

symbolic representations is subject to scalability problems for large graphs, which limits

its applicability.

Deep learning, in contrast, relies on vector representations and therefore falls into the

category of sub-symbolic AI. Over the past decade, deep learning made breakthroughs in a

3

wide range of tasks across multiple domains. Powered by neural networks and their ability

to find patterns in raw data with minimal human intervention, deep learning methods

learn from noisy data while being scalable at inference. In the deep learning community

as well, graph-structured data is receiving increasing attention. The focus lies on building

neural network models that can process the relational structure of graph data. In this

context, graph neural networks refine vector representations through permutation invariant

operations. Often starting from attributed graphs, the node or edge representations are

iteratively updated with respect to the local graph neighbourhood. Another approach

is knowledge graph embeddings. They aim to represent a graph in the vector space by

capturing its entities and relations geometrically. As a result, tasks such as link prediction

and query answering can be solved efficiently based on distance functions in the Euclidean

space. These methods are robust to noise and scale well at inference.

However, the guarantees offered by symbolic approaches are often lost when the graph is

translated into vector space, where predictable inference is no longer ensured. Furthermore,

prior knowledge, sometimes explicitly formulated in an ontology, is neglected by most

approaches. As a result, the predictions in the vector space are not necessarily consistent

with the prior knowledge. Furthermore, deep learning models, including those on graphs,

are black-box models. Deep neural networks typically contain a large number of learnable

parameters. This makes their internal mechanisms intransparent and complicates the

interpretation of their predictions.

Recently, the research field of neuro-symbolic integration has gained interest since it

acknowledges the complementary advantages and disadvantages of sub-symbolic and

symbolic AI. In this context, neuro-symbolic AI seeks to combine both paradigms in order

to find models that are robust, interpretable, knowledge-aware, scalable and accurate.

The goal is to potentially pave the way to trustworthy general artificial intelligence.

Frameworks such as DeepProblog [139] and Logic Tensor Networks [14] are promising

when it comes to integrating the pattern matching capabilities of deep neural networks

with symbolic reasoning about knowledge representations in formal logic. They are used

in various areas such as image recognition, visual scene understanding and multi-label

classification. There, the neuro-symbolic approach results in higher interpretability and

faster convergence compared to purely neural models.

While some neuro-symbolic approaches and concepts are promising for small and confined

tasks, their application to large graphs and complex knowledge is still uncertain. In

particular, the scalability of state-of-the-art neuro-symbolic methods to large graphs

with millions of nodes and edges has not yet been adequately addressed. While the

field of knowledge graph embeddings explores how to capture inference patterns such

as taxonomies, symmetries, or range and domain constraints, the encoding of complex

knowledge is less explored. Furthermore, there is less understanding of how to achieve

predictable inference with knowledge graph embedding, or how to incorporate soft rules.

4

Outline

This thesis investigates how neuro-symbolic AI techniques can be applied to graphs, with

the objective of jointly exploiting prior knowledge in formal logic and real-valued vector

representations. This thesis is structured as follows. It is divided into two main parts: I.

the state-of-the-art and II. the contribution part.

At the beginning of the first part, in Chapter 1, preliminary concepts are presented. In

Chapter 2 relevant concepts and methods from symbolic AI are introduced, followed by

concepts and methods from sub-symbolic AI and in particular deep learning in Chapter 3.
In Chapter 4 methods from neuro-symbolic AI are presented, evaluated and compared.

The second part contains the contributions of this thesis. Chapter 5 studies the repro-

ducibility of Knowledge Enhanced Neural Networks. Given the relevance of the work

on Knowledge Enhanced Neural Networks [46] to this thesis, the experiments are reimple-

mented, reproduced, replicated, and reevaluated. These steps aim to ensure the reliability

of the reimplementation for further extensions. General lessons for improving the repro-

ducibility of machine learning methods are summarised. Chapter 6 introduces the method

Knowledge Enhanced Graph Neural Networks (KeGNN), which incorporates knowledge

enhancement layers into graph neural networks. Unlike previous work where these layers

were used with Multi-Layer Perceptrons, KeGNN leverages graph neural networks. This

allows relational information to be captured and increases the capacity of the model.

The effectiveness of KeGNN is tested through experiments on various graph datasets.

Chapter 7 builds on the previous chapter and deals with the applicability of knowledge

enhancement layers to large graphs, where memory requirements significantly increase.

The sampling method called Restrictive Neighbourhood Sampling (RNS) is introduced to
make KeGNN applicable to large graphs. In addition, experiments with knowledge en-

hancement layers are carried out on benchmark datasets from the Open Graph Benchmark

[93]. Chapter 8 presents the neuro-symbolic method RuleKGE that focuses on knowledge

graph embedding training under the open-world assumption. It combines a symbolic

reasoner to generate positive and negative facts. They are integrated into the training

of knowledge graph embeddings for link prediction. The effectiveness of the method is

shown in several experiments on the Family dataset [120].

5

Part II.

State of the art

7

1. Preliminaries

This section introduces preliminary concepts and definitions related to graph-structured

data and logic that are relevant to this thesis.

1.1. Graph-structured Data

Graph-structured data has recently received a lot of attention. While traditional standard

data formats tend to neglect interactions between entities, these dependencies can be

explicitly modelled in graphs. This makes them a powerful and flexible data format.

Different types of graphs and relevant concepts are formally introduced in this section.

Definition 1.1.1 (Graph). A graph is a tuple G = (V, E) where V = {𝑣1, . . . , 𝑣𝑛} is a finite
set of 𝑛 nodes and E = {𝑒1, . . . 𝑒𝑚} is a finite set of𝑚 edges.

An edge is a tuple (𝑣𝑖, 𝑣 𝑗) that connects the two nodes 𝑣𝑖 ∈ V and 𝑣 𝑗 ∈ V. The edges of a
graph are described as adjacency matrix.

Definition 1.1.2 (Adjacency Matrix). Given a graph G, the adjacency matrix is denoted
as A ∈ {0, 1}𝑛×𝑛 . The (𝑖, 𝑗)-th entry A𝑖 𝑗 indicates whether an edge exists between the nodes
𝑣𝑖 and 𝑣 𝑗 (A𝑖 𝑗 = 1) or not (A𝑖 𝑗 = 0).

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

N1 (𝑣1)

A =

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6



𝑣1 0 1 0 1 1 0

𝑣2 0 0 1 0 0 0

𝑣3 0 0 0 0 0 0

𝑣4 0 0 1 0 1 0

𝑣5 0 0 0 0 0 1

𝑣6 0 0 0 0 0 1

Figure 1.1.: A directed graph is shown on the left. The first-order neighbourhood of the

node 𝑣1 is the set N1(𝑣1) = {𝑣1, 𝑣2, 𝑣5} and is marked in grey. The degree of 𝑣1
is deg(𝑣1) = 3. The adjacency matrix of the graph is shown on the right.

9

1. Preliminaries

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

1.3

0.7

1.9

1.5

0.8

1.1

1.6

1.1 
8

2

.

.

.




1

.

.

.

3

 
1

.

.

.

0



3

9

.

.

.


4

0

.

.

.




5

.

.

.

7

 A =

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6



𝑣1 0 1.3 0 1.9 0.8 0

𝑣2 0 0 0.7 0 0 0

𝑣3 0 0 0 0 0 0

𝑣4 0 0 1.5 0 1.1 0

𝑣5 0 0 0 0 0 1.6

𝑣6 0 0 0 0 0 1.1

Figure 1.2.: A directed, weighted graph, node-attributed is shown on the left and its adja-

cency matrix on the right.

A graph can be directed or undirected. In directed graphs an edge (𝑣𝑖, 𝑣 𝑗) ∈ E leads from

node 𝑣𝑖 to 𝑣 𝑗 . The edges in undirected graphs have no orientation. The adjacency matrix

A of an undirected graph is symmetric, meaning A𝑖 𝑗 = A 𝑗𝑖 for any pair of nodes 𝑣𝑖 ∈ V
and 𝑣 𝑗 ∈ V.

Definition 1.1.3 (Neighbourhood). Given a graph G, the 𝑘-order neighborhood of a
node 𝑣𝑖 ∈ V with 𝑘 ∈ N0 is the set of nodes N𝑘 (𝑣𝑖) with N𝑘 (𝑣𝑖) = {𝑣 𝑗 ∈ V| dist(𝑣𝑖, 𝑣 𝑗) ≤ 𝑘}.
dist(𝑣𝑖, 𝑣 𝑗) represents the shortest path length in terms of number of edges from node 𝑣𝑖 to node
𝑣 𝑗 . If no path exists between 𝑣𝑖 and 𝑣 𝑗 , 𝑣 𝑗 is not included in N𝑘 (𝑣𝑖). The 0-order neighbourhood
N0(𝑣𝑖) of node 𝑣𝑖 is the node 𝑣𝑖 itself.

The k-order neighbourhood over a set of nodes V is N𝑘 (V) = {N𝑘 (𝑣) |𝑣 ∈ V}.

Definition 1.1.4 (Node Degree). Given an undirected graph G = (V, E) with adjacency
matrix A, the node degree of a node 𝑣𝑖 ∈ V is deg(𝑣𝑖) =

∑
𝑗 A𝑖 𝑗 . Given a directed graph G =

(V, E) with adjacency matrix A, the node degree of a node 𝑣𝑖 ∈ V is deg(𝑣𝑖) =
∑
𝑗 A𝑖 𝑗 +

∑
𝑗 A 𝑗𝑖 .

A directed graph with an adjacency matrix is visualised in Figure 1.1. Node and edge

features can provide additional real-valued information about nodes and edges.

Definition 1.1.5 (Attributed Graph). A node-attributed graph G = (V, E,XV) is enriched
with node features XV ∈ R𝑛×𝑑V with feature dimension 𝑑𝑉 . An edge-attributed graph G =

(V, E,XE) is enriched with edge features XV ∈ R𝑛×𝑑V with feature dimension 𝑑𝐸 .

Single-valued edge features are also called edge weights. A graph with edge weights is

called weighted. In the case of a weighted graph, the adjacency matrix contains the edge

weights. A graph is called node-labelled if 𝑐 different labels Y ∈ R𝑛×𝑐 are assigned to each

node. A weighted and node-attributed graph is shown in Figure 1.2.

10

1.1. Graph-structured Data

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑟1

𝑟2

𝑟2

𝑟1

𝑟3

𝑟1

𝑟3

𝑟1

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1

Figure 1.3.: A heterogeneous graph with the relations T𝐸 = {𝑟1, 𝑟2, 𝑟3} is shown on the left.

The edges are denoted as relation-specific adjacency matrices on the right.

Definition 1.1.6 (Heterogeneous Graph). A heterogeneous graph is defined as a G =

(V, E,T𝑉 ,T𝐸), where the nodes V and edges E are associated with type functions f𝑛 : V ↦→ TV
and f𝑒 : E ↦→ TE. They assign node and edge types to nodes and edges respectively. TV and TE
are finite sets of node and edge types.

Heterogeneous graphs with multiple edge types are also called multi-relational graphs. In
the case of attributed and heterogeneous graphs, the edge and node feature dimension

𝑑E and 𝑑V can differ with node and edge type. An example of a heterogeneous graph is

shown in Figure 1.3.

Definition 1.1.7 (Homogeneous Graph). In a homogeneous graph G = (V, E), all nodes
in V are instances of the same node type, and all edges in E are instances of the same edge
type.

1.1.1. Tasks on Graphs

A graph G = (V, E,Y) with labels Y is split into a training graph and a test graph. Inductive
or Transductive learning [171] can be applied, see Figure 1.4.

Definition 1.1.8 (Inductive Learning). In inductive learning, the training graph isGtrain =

(Vtrain, Etrain,Ytrain) and the test graph is Gtest = (Vtest, Etest,Ytest), where {𝑣 |𝑣 ∈ Vtrain ∧ 𝑣 ∈
Vtest} = ∅.

Definition 1.1.9 (Transductive Learning). In transductive learning, the training graph is
Gtrain = (V, E,Ytrain) and Vtest ⊂ Vtrain.

In the transductive setting, the entire graph is available at training, including edges between

train and test nodes. The labels of the test nodes are masked. In the inductive setting, no

edges between nodes in the training and the test graph exist.

11

1. Preliminaries

𝑣1

𝑣2
𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

𝑣10𝑣11

𝑣12

Gtrain Gtest

𝑣1

𝑣2
𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

𝑣10𝑣11

𝑣12

Gtrain Gtest

Figure 1.4.: In inductive learning, as shown above, the training graph Gtrain and the test

graph Gtest are not connected with edges. In transductive learning, as shown

below, edges between nodes of the training and test graph do exist and are

drawn in red.

Several graph-related tasks are subject to research such as node classification, graph

clustering, link prediction and graph classification. This thesis focuses on the tasks of node
classification and link prediction [138].

Definition 1.1.10 (Node Classification). The task of node classification is to leverage

Gtrain with the labels Ytrain to learn a function that assigns labels to the nodes Vtest in the

test graph.

Definition 1.1.11 (Link Prediction). Given a graphG = (V, E), letM denote the set of all

possible edges between nodes in V. The set E′ contains the unobserved edges between the

nodes and is denoted as E′ = M/E. The goal of link prediction is to leverage the existing

edges E and nodes V in G to learn a function that predicts the edges in E′ that are likely to

exist.

1.1.2. Knowledge Graph

Knowledge graphs [91, 171, 104] are considered as multi-relational, directed graph struc-

tures where nodes are called entities and edge types are called relations. They store

12

1.1. Graph-structured Data

Figure 1.5.: Illustration of an example knowledge graph. The figure is taken from [9].

information in the form of facts, which relations between pairs of entities. The compo-

nents of a fact are also known as (head, relation, tail) or (subject, predicate, object). Entities
represent real-world objects or abstract concepts, while relations describe the relationships

between them. Well-known knowledge graphs are for example Wikidata [210], YAGO

[191] and Freebase [25]. The illustration of a knowledge graph is shown in Figure 1.5.

Definition 1.1.12 (Knowledge Graph). A knowledge graph is defined as tuple K =

(E,R, F), where E is a set of entities, R a set of relations and F ⊂ (E × R × E) is a set of
facts. Facts are stored as triples (𝑒ℎ, 𝑟 , 𝑒𝑡) with head and tail entities 𝑒ℎ, 𝑒𝑡 ∈ E and a relation
𝑟 ∈ R between them.

The terms one-to-one, one-to-many, and many-to-one describe different characteristics of
relations between entities. A one-to-one relation connects a head entity to exactly one

tail entity, e.g. PassportID(h,t). A one-to-many relation associates a single head entity

with multiple tail entities, e.g. hasFather(h,t). A many-to-one relation is the opposite,

e.g. bornIn(h,t). A many-to-many relation links multiple head entities to multiple tail

entities, e.g. sibling(h,t).

While knowledge graphs can in principle be enriched with node and edge features [91,

2, 71, 171], the vast majority of benchmarks consist only of a set of facts and are not

attributed with node features [149, 191, 31].

Knowledge graphs are known to be incomplete. For example, 71% of individual persons in

Freebase do not have an edge to a birthplace and 78% do not have an edge to a nationality

[209]. In Wikidata, 50% of the artists do not have a birthplace [209]. This incompleteness

has several reasons. First, knowledge graphs are typically built semi-automatically from

existing knowledge based on heuristics, extraction patterns or crowdsourcing methods,

which can be prone to errors [104, 21, 3, 102, 222]. Second, it would not be reasonable to

explicitly store every known fact about a world [39]. This would lead to overhead and

13

1. Preliminaries

redundant information, when many facts are inferred [79]. The notation of the edges

as facts, as opposed to an adjacency matrix, is suitable for supporting incompleteness.

Knowledge graphs usually consist only of explicitly known facts, which are assumed to

be valid [9], but do not guarantee to contain all true facts. Different assumptions can be

made about the implicit facts. Under the Closed World Assumption (CWA), facts that are
not contained in the graph are assumed to be false. Under the Open World Assumption
(OWA), facts that are not contained in the graph are not known to be true or false [157].

1.1.3. Opportunities

Knowledge graphs have received increasing attention in various domains, as well as from

academia and from industry [104]. Knowledge graphs such as YAGO [191], Freebase [25],

Wikidata [210] and Nell [31] contain general knowledge, while others such as BioRDF

[29] store domain knowledge in the field of life sciences. In addition to open knowledge

graphs, there are many enterprise knowledge graphs in industry, such as LinkedIn [86],

Bloomberg [145] and IBM [158]. Knowledge graphs, compared to basic data, particularly

have the following benefits.

Relational Semantics. Graph-structured data expresses relationships between entities.

This feature makes them a rich data source to model context, complex patterns, long-range

dependencies and cyclic structures [91].

Flexibility. Since knowledge graphs store information as facts, the definition of a rigid

schema can be postponed [91]. This enables graphs to be extended flexibly and to incorpo-

rate information from various data sources. Moreover, in contrast to an adjacency matrix,

the triple format facilitates the representation of incomplete knowledge and supports

efficient storage of large data.

Applications. Given their advantageous properties, knowledge graphs have proven useful

across a variety of applications, including question answering [44, 54, 152], complex query

answering [171], recommender systems [224, 198], natural language processing [230,

133, 109], biomedical research, fraud detection, and more. In general, they are a central

representation to many information systems on the web [39].

1.1.4. Challenges

Despite these advantages, graphs present some challenges that need to be addressed in

order to unlock their potential.

14

1.2. Logic

Sparse Representation. In contrast to a dense adjacency matrix, facts are sparse infor-

mation and difficult to manipulate for machine learning algorithms mainly designed for

dense matrices [201]. While data such as images and text have a clear grid-like structure,

knowledge graphs do not have a start, end or order. This is also known as the geometric
deep learning problem [27, 212]. To be applicable to graphs, mathematical operations such

as convolutions or pooling need to be generalized to non-grid structures. Many algorithms

in the field of graph neural networks [114, 196, 80] are only applicable to homogeneous

graphs.

Incompleteness. The incompleteness of knowledge graphs is also a major challenge for

many algorithms, making it difficult to model them as dense matrices. However, most

machine learning algorithms are adapted to dense matrix data that is explicit and complete.

For example, common graph neural network methods [114, 212] assume that the graph

structure is complete and free of noise [96].

Large Scale. In the era of big data, graphs often contain millions or billions of edges [183].

Therefore, algorithms applied to them need to scale to such dimensions [219, 231, 93, 177].

Many traditional learning algorithms on graphs are NP-complete and are sensitive to the

number of nodes [201]. Their application can be infeasible due to their complexity [171].

1.2. Logic

Logic is the systematic study of valid reasoning, inference, and argumentation. It provides

a formal framework for formulating claims and analysing their validity. In essence, logic

is concerned with the principles of correct reasoning that enable one to draw conclusions,

and assess the coherence of statements and propositions [51]. A logical language is a formal

system composed of syntax, semantics and inference rules [52]. Logic has a wide range

of applications, from philosophy to artificial intelligence. This section briefly introduces

propositional logic, first-order logic, fuzzy logic and description logics. An overview of the

logical languages is summarized in Table 1.2.

1.2.1. Propositional Logic

Propositional logic focuses on propositions which are atoms that are either True or False,
never both and never neither. It is used to represent and reason about simple statements,

called propositions, and their logical relationships.

Signature. A signature in propositional logic is a set of propositional variables Σ =

{Φ,Ψ, . . .}..

15

1. Preliminaries

Name DL Description FOL Example

Top ⊤ Thing ⊤, ∀𝑥 : ⊤(𝑥) = true ⊤ ⊑ Male ⊔ Female

Bottom ⊥ Nothing ⊥, ∀𝑥 :⊥ (𝑥) = false Male ⊓ Female ⊑⊥
Subsumption 𝐴 ⊑ 𝐵 A subclass of B ∀𝑥 : 𝐴(𝑥) → 𝐵(𝑥) Child ⊑ Human

𝑅 ⊑ 𝑆 R subproperty of S ∀𝑥∀𝑦 : 𝑅(𝑥,𝑦) → 𝑆 (𝑥,𝑦) Mother ⊑ Parent

Equivalence 𝐴 ≡ 𝐵 A equivalent to B ∀𝑥 : 𝐴(𝑥) ↔ 𝐵(𝑥) Person ≡ Human

Instantiation 𝐴(𝑖) i type A 𝐴(𝑖) Female(julia)

Relations 𝑅(𝑖, 𝑗) i related to j with R 𝑅(𝑖, 𝑗) Mother(julia,rob)

Complement ¬𝐴 not A ¬𝐴(𝑥) not Mother(julia,rob)

Intersection 𝐴 ⊓ 𝐵 A and B 𝐴(𝑥) ∧ 𝐵(𝑥) Female ⊓ Parent

Union 𝐴 ⊔ 𝐵 A or B 𝐴(𝑥) ∨ 𝐵(𝑥) Father ⊔ Mother

Inverse 𝑅− inverse of R ∀𝑥,𝑦 : 𝑅(𝑥,𝑦) → 𝑅− (𝑦, 𝑥) marriedTo ≡ marriedTo−

Composition 𝑅 ◦ 𝑆 composition of

R and S

∀𝑥,𝑦, 𝑧 : 𝑅(𝑥,𝑦) ∧ 𝑆 (𝑦, 𝑧) Brother o Parent ⊑ Uncle

Table 1.2.: Overview of the syntax and semantics in description logics (DL) and its rewriting

in first-order logics (FOL). 𝐴 and 𝐵 are concepts in DL and unary predicates

in FOL. 𝑅 and 𝑆 are relations in DL and binary predicates in FOL. 𝑖 and 𝑗 are

entities in DL or constants in FOL. 𝑥 , 𝑦 and 𝑧 are variables.

Syntax. Propositions can be combined with logical connectives. Given two propositions

𝚽 and 𝚿, the following expressions are also propositions

¬Φ
Φ→ Ψ

Φ ∧ Ψ

Φ ∨ Ψ

Φ↔ Ψ,

(1.1)

where ∧ stands for conjunction, ∨ for disjunction,→ for implication,↔ for equivalence

and ¬ for negation.

Semantics. Given two propositions Φ and Ψ, the meaning of the connectives is defined

by truth tables. In propositional logic, a statement that must be true is called a tautology,
and a statement that must be false is called a contradiction.

Example 1.2.1 (Propositonal Logic). Suppose there are two propositions:

Φ : It is raining

Ψ : I am carrying an umbrella.

(1.2)

16

1.2. Logic

These propositions are used to express different relationships, e.g. Ψ ∧ Φ: "It is raining
and I am carrying an umbrella". This corresponds to the following truth table.

Φ Ψ Φ ∧ Ψ
True True True

True False False

False True False

False False False

1.2.2. First-order Logic

Unlike propositional logic, first-order logic is more expressive and allows to formulate

more complex relationships using quantification.

Signature. First-order logic consists of pairwise disjoint sets of predicates P, constants
C, variablesV and functions F 1

.

Syntax. The most basic form of a formula in first-order logic is an atom. An atom applies

a predicate to a constant and is denoted as 𝑟 (𝑡1, . . . , 𝑡𝑛), where 𝑟 ∈ P is an 𝑛-ary relation

and 𝑡1, . . . , 𝑡𝑛 are terms. A term 𝑡𝑖 is a constant, a variable or a structured term of the form

𝑓 (𝑡1, . . . , 𝑡𝑞) with functor 𝑓 . Further, a positive or negative atom is called literal. First-order
logic uses the same connectives as presented for propositional logic in Equation 1.1. In

addition, the existential quantifier ∃ and the universal quantifier ∀ are defined. A variable

that is within the scope of a quantifier in a formula is called quantified and free if it is
not.

Given these components, atoms can be combined with logical connectives and quantifiers

to form complex formulae 𝜑 . They can be constructed recursively using the following

grammar.

𝜑 = 𝑟 (𝑠1, . . . , 𝑠𝑛) |¬𝜑 |𝜑 ∧𝜓 |𝜑 → 𝜓 |𝜑 ∨𝜓 |∃𝑥𝜑 | ∀𝑥𝜑 (1.3)

Here, 𝑟 ∈ P is an 𝑛-ary predicate and 𝑥 ∈ V is a variable.

Semantics. Constants represent objects or entities and functors represent functions.

Variables make abstractions about entities and predicates of the arity 𝑛 describe a property

or relations of 𝑛 objects in a domain [50]. ∀𝑥𝜑 (𝑥) means that the expression 𝜑 is valid for

all variables 𝑥 . ∃𝑥𝜑 (𝑥) means that at least one object in the domain has the property 𝜑 .

As in propositional logic, the meanings of the connectives in first-order logic are defined

by their truth tables.

1
This is a different notation from the set of facts F in a knowledge graph introduced in Section 1.1.2

17

1. Preliminaries

Grounding. The replacement of variables by constants is called grounding. An atom

containing only constants is called grounded atom. Thus, a grounded literal is a posi-

tive or negative grounded atom and a grounded formula is a formula containing only

grounded atoms. A substitution of variables 𝑥𝑖 ∈ X by constants 𝑐𝑖 ∈ C is defined as

𝜃 = {𝑥1 |𝑐1, . . . , 𝑥𝑘 |𝑐𝑘}. Applying 𝜃 to a logical expression 𝜑 results in the replacement of

all variables 𝑥𝑖 ∈ 𝜃 in the expression by the defined constants 𝑐𝑖 ∈ 𝜃 [50].

Example 1.2.2 (First-Order Logic). The following atoms are defined in first-order logic.

Person(𝑥) : 𝑥 is a person.

Umbrella(𝑥) : 𝑥 is carrying an umbrella.

Rain : it is raining.

(1.4)

Then the statements "Everyone carries an umbrella when it rains" and "There is at least

one person who carries an umbrella when it rains" are made.

∀x: Person(x) ∧ Rain→ Umbrella(x)

∃x: Person(x) ∧ Rain ∧ Umbrella(x)

(1.5)

1.2.3. Fuzzy Logic

While the previously introduced logical languages only consider the Boolean truth values

True and False, Fuzzy logic [220] is a form of many-valued logic that denotes truth values

in a continuous interval of [0, 1] ⊂ R. Fuzzy logic supports the concept of partial truth,

where statements are neither completely true nor completely false. This allows to express

vagueness and uncertainty. Fuzzy logic is based on triangular norm theory [117]. It is useful

to model logical operators as real-valued functions that take into account continuous truth

values. In the following, the t-norm and t-conorm are defined.

Definition 1.2.1 (t-norm). The t-norm is a function ⊤ : [0, 1] × [0, 1] ↦→ [0, 1] that
satisfies the following properties:

𝐶𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑣𝑖𝑡𝑦 ⊤(𝑎, 𝑏) = ⊤(𝑏, 𝑎)
𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 ⊤(𝑎, 𝑏) ≤ ⊤(𝑐, 𝑑) if 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑
𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑖𝑡𝑦 ⊤(𝑎,⊤(𝑏, 𝑐)) = ⊤(⊤(𝑎, 𝑏), 𝑐)
𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 ⊤(𝑎, 1) = 𝑎.

Definition 1.2.2 (t-conorm). The t-conorm is a function ⊤ : [0, 1] × [0, 1] ↦→ [0, 1] that
satisfies the properties of commutativity, monotonicity, associativity and has the neutral
element ⊥ (𝑎, 0) = 𝑎.

18

1.2. Logic

T-conorms are dual to t-norms. Given a t-norm⊤, the corresponding t-conorm is defined as

⊥ (𝑎, 𝑏) = 1−⊤(1−𝑎, 1−𝑏). Some examples of t-norm functions with their corresponding

t-conorms are the Gödel t-norm, the Łukasiewicz t-norm, and the product t-norm. The

way they represent logical operators in fuzzy logic is shown in Table 1.3.

Expression Product Łukasiewicz Gödel

𝑥 ∧ 𝑦 ⊤Prod = 𝑥 · 𝑦 ⊤Łuk = max(0, 𝑥 + 𝑦 − 1) ⊤min = min(𝑥,𝑦)
𝑥 ∨ 𝑦 ⊥Prod= 𝑥 + 𝑦 − 𝑥 · 𝑦 ⊥Łuk= min(1, 𝑥 + 𝑦) ⊥max= max(𝑥,𝑦)
𝑥 → 𝑦

(𝑦
𝑥

)
, 𝑥 > 0 1 − 𝑥 + 𝑦 𝑦

¬𝑥 1 − 𝑥 1 − 𝑥 1 − 𝑥

Table 1.3.: Overview of the Product, Łukasiewicz, Gödel t-norm and t-conorm functions

for logical operators. 𝑥 and 𝑦 are logical expressions.

In fuzzy logic, quantifiers are represented as symmetric and continuous aggregation

operators of the form Agg :

⋃
𝑛∈N [0, 1]𝑛 → [0, 1]. Appropriate aggregators for ∃ and ∀

are 𝐴𝑝𝑀 and 𝐴𝑝𝑀𝐸 with 𝑝 ≥ 1 [14]. They represent the smooth maximum and minimum

of 𝑛 truth values {𝑎1, . . . , 𝑎𝑛} ∈ [0, 1] ⊂ R.

∃ : 𝐴𝑝𝑀 (𝑎1, . . . , 𝑎𝑛) =
(
1

𝑛

𝑛∑︁
𝑖=1

𝑎
𝑝

𝑖

) 1

𝑝

𝑝 ⩾ 1 (1.6)

∀ : 𝐴𝑝𝑀𝐸 (𝑎1, . . . , 𝑎𝑛) = 1 −
(
1

𝑛

𝑛∑︁
𝑖=1

(1 − 𝑎𝑖)𝑝
) 1

𝑝

𝑝 ⩾ 1 (1.7)

The parameter 𝑝 controls the flexibility of the operator to outliers.

Soft rules. The notion of degree of truth also allows to formulate soft rules in contrast

to hard rules. Hard rules are usually hand-crafted by experts and are expected to hold

without exception. Soft rules are tagged with a score that corresponds to the confidence

in the rule. This enables better handling of exceptions. Soft rules with confidence scores

can also be automatically extracted from data [65, 146].

1.2.4. Description Logics

Description logics (DL) [12] is a family of knowledge representation languages widely used

in the context of knowledge graphs. The key elements are finite sets of entities 𝐸, concepts
𝐶 and relations 𝑅. Furthermore, the logical operators negation (¬), equality (≡), intersection
(⊓), union (⊔) and logical inclusion (⊑) allow building complex formulae. Further, the top
concept ⊤ is used to make statements about each entity and the bottom concept ⊥ describes

the empty set of concepts.
2
Universal (∀𝑅.𝐶) and existential restriction (∃𝑅.𝐶) quantify

2
The notation of t-norm and t-conorm is distinct from the notation of the top and bottom concept in logic.

19

1. Preliminaries

over sets of concepts. Description logics is a subset of first-order logic, where the arity of

predicates is limited to two. In the terminology of first-order logic, entities correspond to

constants, concepts to unary predicates and relations to binary predicates. A summary of

the operators in DL and their rewriting in first-order logic is presented in Table 1.2.

1 John rdf:type Person. % Individuals

2 Mary rdf:type Person.

3 Jane rdf:type Person.

4 Rob rdf:type Person.

6 Person rdf:type owl:Class.

7 Male rdf:type owl:Class. % Concepts

8 rdfs:subClassOf Person.

9 Female rdf:type owl:Class.

10 rdfs:subClassOf Person.

12 hasChild rdf:type owl:ObjectProperty. % Roles

13 rdfs:domain :Parent.

14 rdfs:range :Child.

15 isChildOf rdf:type owl:ObjectProperty.

16 rdfs:domain :Person.

17 rdfs:range :Person.

19 Male owl:disjointWith Female. % TBox Axiom

21 hasChild owl:inverseOf isChildOf. % RBox Axiom

Figure 1.6.: An example ontology describing kinship relations.

The axioms formulated inDL are categorized into (1) assertional axioms (ABox), (2) relational
axioms (RBox), and (3) terminological axioms (TBox) [123]. Abox axioms refer to the facts

about the instances in a knowledge graph. They encode knowledge about entities and

describe the concepts to which individuals belong, such as City(Paris), or the relationships
between them, such as ParentOf(Julia, John), also known as roles. In contrast, TBox

axioms characterise general relationships between concepts and RBox axioms between

relations. This allows to formulate complex relationships between relations and concepts

such as symmetry, hierarchy, inclusion, transitivity or mutual exclusion.

Ontologies. An ontology is a set of TBox and RBox axioms in DL. Ontologies are formal

and explicit specifications of the concepts, entities and relations that exist in a particular

domain, see Section 1.1.2. In other words, they describe the semantics of the components

in a knowledge graph by formalising conventions about what entities and relations mean

in a domain [91]. While the facts in a knowledge graph are seen as premises, ontologies

encode general rules, also known as common sense or domain knowledge. In this context,

ontologies together with facts allow reasoning on knowledge graphs. This concretely

means inferring new facts from existing facts and rules [106]. Ontologies are often

20

1.2. Logic

composed of schemas and complex formulae in OWL [205]. A schema describes the

high-level semantics that the knowledge graphs follow [91] and includes, for example,

range constraints for relations, formulated in RDFS [118]. Since not all knowledge graphs

have a schema [170], ontology learning tasks allow to build, refine and learn ontologies

[211, 60].

Example 1.2.3 (Ontology). The ontology in Figure 1.6 represents basic concepts and

relations in the family domain. The entities John, Mary, Jane and Bob are instances of

the concept :Person. The concepts Female and Male are subclasses of Person. The roles

isChildOf and hasChild denote relationships between individuals. The TBox axiom Male

owl:disjointWith Female states that the concepts Male and Female are disjoint, i.e. no

individual is both male and female. The RBox axiom hasChild owl:inverseOf isChildOf

asserts that the property hasChild is the inverse of the property isChildOf.

21

2. Symbolic Reasoning

Symbolic reasoning refers to reasoning techniques based on formal methods. Logical

languages, such as first-order logic and description logics, are a cornerstone of symbolic

systems. Knowledge in symbolic systems often refers to rules that are hand-crafted by

experts. Symbolic methods are typically deterministic and close to human language, which

makes their application explainable and understandable [88, 100]. This section introduces

some prominent symbolic reasoning techniques.

2.1. Logic Programming

Logic Programming [16] is a relevant symbolic reasoning technique based on Horn rules
[92].

Definition 2.1.1 (Horn Rule). A horn rule is defined as 𝜂 ← 𝐵(𝛽1 ∧ . . . ∧ 𝛽𝑛), where
the head 𝜂 is a singular atomic formula and the body 𝐵 is a conjunction of atomic formulae
𝛽1 ∧ . . . ∧ 𝛽𝑛 in first-order logic.

Each atomic formula 𝛽𝑖 is a literal of the form 𝑟 (𝑡1, . . . , 𝑡𝑛), where 𝑟 ∈ P is a predicate

and 𝑡1, . . . , 𝑡𝑛 are terms. A finite set of rules and facts is known as a logic program. A

logic program describes a specification of possible theories in a world. The rules serve as

constraints that these theories should satisfy.

Given a logic program, reasoning describes the process of deriving new facts from existing

ones. When the head of a rule is satisfied, the tail can be inferred. An inferred fact is called

the immediate consequence of the program and the facts. Starting with a set of atomic facts

and a logic program, the rules of the program are applied repeatedly to the existing facts

and inferred facts until no more new facts are derived. This state is called a fixpoint and
the procedure is called forward chaining. Proof trees show how a new fact is derived from

the original facts and rules of a program in a bottom-up manner.

A prominent declarative programming language is Datalog [28]. A program in Datalog

consists of finite sets of facts and rules. While facts are grounded atoms, rules contain

variables and follow the syntax of Horn rules, see Definition 2.1.1. In Datalog, rules are

written as 𝜂 : −𝛽1, . . . , 𝛽𝑛 . Datalog programs are used for deductive reasoning and are

evaluated in a bottom-up manner. The existence of a fixpoint in Datalog is guaranteed for

linear rules and rules with stratified negation [5].

23

2. Symbolic Reasoning

Example 2.1.1 (Datalog). Consider the following Datalog program:

1 parentOf(A,B) :- childOf(B,A)

2 childOf("alice", "bob")

The program contains a rule which describes the inverse relation between the concepts

parentOf and childOf and a fact which states that the constant "alice" is the child of the

constant "bob". By evaluating the Datalog program, the fact parentOf("bob", "alice") is

an immediate consequence of the program and is inferred.

2.2. Probabilistic Logic Programming

Probabilistic Logic Programming (ProbLog) [202, 63] introduces probabilities to logic pro-

gramming. A program in ProbLog consists of rules and probabilistic facts, where a proba-
bility 𝑝 ∈ [0, 1] ⊂ R is attached to a ground atom 𝑓 , denoted as 𝑝 :: 𝑓 or 𝑃𝑟 (𝑓) = 𝑝 . This
allows to model uncertainties. Facts are treated as independent Boolean random variables

that are considered as true with probability 𝑝 and as false with probability 1 − 𝑝 with

𝑝 ∈ [0, 1] ⊂ R.

Example 2.2.1 (ProbLog). The following ProbLog program indicates that a burglary or

an earthquake occurs with certain probabilities. The person Mary might hear the alarm

with probability of 0.5. If Mary hears the alarm, she will call the police.

1 0.1 :: burglary

2 0.2 :: earthquake

3 0.5 :: hears_alarm("mary")

4 alarm :- earthquark

5 alarm :- burglary

6 calls(X) :- alarm, hears_alarm(X)

Inference in ProbLog means returning the success probability 𝑞 of a ground fact. The

calculation of the success probability is based on proofs. A proof of a given fact 𝑓 ′ is
defined as the minimal set of input facts 𝐹 that can infer 𝑓 ′, and is denoted as 𝐹 ∈ P(F),
where P is the power set of all known facts. The probability of a proof 𝑃𝑟 (𝐹) is defined as

the product of the truth values 𝑝𝑖 of the probabilistic facts 𝑓𝑖 as

𝑃𝑟 (𝐹) =
∏
𝑓𝑖∈𝐹

𝑝𝑖

∏
𝑓𝑖∈F \𝐹

(1 − 𝑝𝑖) . (2.1)

Given a set of proofs 𝑆𝑞 , the success probability is the joint probability of all proofs in

the set 𝑆𝑞: 𝑞 = 𝑃𝑟 (𝑆𝑞). The set of proofs for a query 𝑆𝑞 can be determined during the

bottom-up execution of the program based on a Sequential Decision Diagram (SDD) [49] by

computing truth values from known facts to truth values of logic statements. This process

is called Weighted Model Counting (WMC) [112] and is based on semirings. Semirings

24

2.3. Inductive Logic Programming

define binary operations for disjunction ⊕ and conjunction ⊗ of sets of proofs 𝑆1, 𝑆2, so

that the truth values of proofs in a set can be combined. For example, 𝑆1 ⊕ 𝑆2 = 𝑆1 ∪ 𝑆2 or
𝑆1 ⊗ 𝑆2 = {𝐹 | 𝐹 = 𝐹1 ∪ 𝐹2, (𝐹1, 𝐹2) ∈ 𝑆1 × 𝑆2, 𝐹 }, where 𝐹 contains no disjunction conflict.

Given these semantics, the set of proofs for a query is constructed in a bottom-upmanner:

𝑆𝑞 =
⊕

𝐹 derives 𝑞

©­«
⊗
𝑓 ∈𝐹

𝑆 𝑓
ª®¬ . (2.2)

It is shown in [112] that the bottom-up pass calculation is correct for any commuta-

tive semiring, where both the multiplication and the addition operator are associative,

commutative, and have a neutral element [112].

Example 2.2.2 (ProbLog Inference). To illustrate the query evaluation in Problog,

consider the previous logic program in Example 2.2.1. The query of interest is calls("mary").

The corresponding SDD looks as follows.

AND AND

AND

OR

calls(mary)

￢earthquake

0.8

earthquake

0.2

burglary

0.1

hears_alarm(mary)

0.5

0.08 0.1

0.04

0.14

Figure 2.1.: The SDD for the burglary example. The figure is taken from [139].

The query is decomposed in its proofs under the guidance of the SDD.

calls("mary")

↔ hears_alarm("mary") ∧ earthquake

↔ hears_alarm("mary") ∧ (burglary ∨ ¬earthquake)
(2.3)

Given the multiplication as operator for ⊗ and addition as operator for ⊕, the success
probability of the query calls("mary") results in

𝑃 (calls("mary")) = 0.2 · 0.5 + (0.5 · 0.8 · 0.1) = 0.14. (2.4)

2.3. Inductive Logic Programming

The central task in Inductive Logic Programming (ILP) [153] is to induce rules from the facts

in a dataset. It is based on symbolic rule mining techniques that focus on statistical metrics

in the data, such as correlations, and generalise them into rules. These rules are useful for

various tasks, such as identifying regularities in databases and detecting errors. Likewise,

25

2. Symbolic Reasoning

they can be used for deductive reasoning. They can also be employed in neuro-symbolic

systems that rely on input rules, but do not yet have expert knowledge available [226, 222,

40].

A widely used ILP approach is the association rule mining technique AMIE [65]. AMIE

efficiently generates Horn rules 𝜂 ← 𝐵, see Definition 2.1.1, where the head is 𝑟 (𝑥,𝑦) with
relation 𝑟 . Starting from a set of facts, the rules are iteratively mined according to their

support and confidence.

The support of a rule is

supp(𝑟 (𝑥,𝑦) ← 𝐵) := |{(𝑥,𝑦) : ∃𝑧1, . . . , 𝑧𝑚 : ®𝐵 ∧ 𝑟 (𝑥,𝑦)}|, (2.5)

where 𝑧1, . . . , 𝑧𝑚 are the variables of the rule apart from 𝑥 ard 𝑦. AMIE uses the head
coverage ℎ𝑐 which is based on the support and measures the proportion of the occurrence

of a rule pattern in the dataset.

ℎ𝑐 (𝑟 (𝑥,𝑦) ← 𝐵) := supp(𝑟 (𝑥,𝑦) ← 𝐵)
|{(𝑥′, 𝑦′) : 𝑟 (𝑥′, 𝑦′)}| (2.6)

The denominator is the length of the set of all tuples (𝑥′, 𝑦′) such that 𝑟 (𝑥′, 𝑦′) holds.

The confidence measures the proportion of facts in which the rule applies to the number

of cases in which the rule body is satisfied.

conf (𝑟 (𝑥,𝑦) ← 𝐵) := supp(𝑟 (𝑥,𝑦) ← 𝐵)
|{(𝑥,𝑦) : ∃𝑧1, . . . , 𝑧𝑚 : 𝐵}| (2.7)

AMIE adapts a the confidence metric conf𝑝𝑐𝑎 , where the confidence is not normalized by

the entire set of facts, but only by the set of facts that are known to be true and the facts

that are assumed to be false:

conf𝑝𝑐𝑎 (𝑟 (𝑥,𝑦) ← 𝐵) := supp(𝑟 (𝑥,𝑦) ← 𝐵)
|{(𝑥,𝑦) : ∃𝑧1, . . . , 𝑧𝑚, 𝑦′ : ®𝐵 ∧ 𝑟 (𝑥,𝑦′)}|

(2.8)

The rules generated by AMIE must exceed a head coverage threshold, a confidence thresh-

old and match a maximum rule length. In addition, AMIE imposes a language bias as

a constraint on rule creation to reduce the search space. This avoids mining rules that

are unlikely to predict the existence of a fact. Several extensions to AMIE were proposed

that introduce pruning strategies, approximations and parallelization techniques that

accelerate rule mining [66, 124]. However, a limitation of AMIE and its extensions is the

combinatorial explosion in the rule discovery process.

Furthermore, Anytime Bottom-Up Rule Learning (AnyBURL) [146] uses relation-based
sampling to harness information for rule learning in a bottom-up manner. Starting with

a given relation and an initial path length of two, it collects neighbouring relations to

form rules. The sampled paths are generalised to Horn rules. The path length is increased

iteratively to learn longer rules. Similar to AMIE, candidate rules are selected based on

their confidence scores. There are several extensions to AnyBURL that aim to improve the

quality of the rules produced. Reinforce AnyBurl [147] uses reinforcement learning and

provides confidence and rule length as rewards. SAFRAN [159] uses clustering techniques

to detect redundant rules.

26

2.4. Limitations

2.4. Limitations

Although symbolic methods have clear strengths, such as interpretability, they also present

some obstacles.

Scalability. A major limitation is scalability. Rule learning approaches require the explo-

ration of a search space that grows exponentially with the number of relations. In the

context of large graphs, these methods have scalability limitations [78, 197, 110, 222]. Logic

programming methods such as Datalog and Problog rely on weighted model counting,

which aims to aggregate the assignments of multiple positive worlds. This amounts to a

MAX-SAT problem, which is NP-hard [36].

Specification of prior knowledge. Many symbolic methods, such as Problog or Datalog,

require external prior knowledge expressed in a logical language. This includes general

rules, but also the probability values for grounded terms in Problog, for example. The

provision of handcrafted expert knowledge can be a bottleneck for the system [41]. ILP

methods can extract rules with confidence scores from data. However, the reliability of

the rules depends on the quality of the data and the choice of the confidence threshold

parameter [222].

Noise and uncertainty. Rule-based reasoning techniques have difficulty expressing noise

and uncertainty [36, 78, 222, 100, 128]. This limits the reliability of automatically generated

rules and their applicability to some real-world datasets, which are known to contain noise.

Since information is assumed to be true and deterministic, false information propagates in

symbolic reasoning. Although some methods take confidence values or probabilities into

account, the performance of the model can be affected if the model is not able to detect

and to correct errors and noise. Furthermore, missing data can be a problem in symbolic

reasoning methods [119].

Inflexibility. Symbolic methods are successful for static and well-defined problems and

sometimes fail to generalise to problems beyond a given domain. They also lack the

expressiveness to detect patterns in high-dimensional, unstructured data and necessarily

rely on information at a symbolic level [70, 100].

27

3. Sub-symbolic Reasoning

Sub-symbolic reasoning techniques do not rely on explicit symbols or logical rules. Instead,

they exploit the patterns and structure inherent in data by operating in the continuous space

without resorting to explicit symbols. Geometric interpretations or distance functions

are used to solve reasoning tasks such as node classification and link prediction in a

sub-symbolic manner. Parameterised functions are typically learned through a training

stage where a differentiable loss function is optimised. A subset of sub-symbolic methods

are neural
1
methods, which refer particularly to the use of deep neural networks [88].

This section introduces relevant sub-symbolic techniques in the context of graphs. These

include knowledge graph embeddings, which represent entities and relations in a graph as

vectors in an embedding space. Furthermore, graph neural networks is a class of neural
networks adapted to the structure of graphs.

3.1. Knowledge Graph Embeddings

The goal of knowledge graph embeddings is to learn a dense representation of the knowl-

edge graph in a continuous low-dimensional vector space that captures the structural

properties of the graph. These embeddings are useful as input for various tasks such as

entity disambiguation and clustering, as well as for downstream tasks such as question

answering and recommendation systems [201]. However, their most prominent use case

is link prediction.

In knowledge graph embeddings methods, entities and relations are encoded as lookup

matrices. In other words, given a knowledge graphK = (E,R, F),𝑑-dimensinal embedding

vectors for the entities in E and the relations in R with dimension 𝑑 are learned through

an optimization task [171]. In this way, a fact (ℎ, 𝑟, 𝑡) is represented in the vector space

as (h, r, t), where h and t are the vector representations of the head and tail entities. The

entity and relation embeddings are randomly initialised at the beginning of the training

and optimised over several training epochs using gradient descent [111]. As a result,

embeddings are found that represent the structure of entities and relations in the training

graph. In knowledge graph embedding methods, a score function 𝑓𝑠𝑐𝑜𝑟𝑒 is defined:

𝑓𝑠𝑐𝑜𝑟𝑒 : E × R × E → R. (3.1)

1
The terms neuro and neural are used interchangeably in the literature.

29

3. Sub-symbolic Reasoning

h

t
r

𝑓score

h
t

h⊥
t⊥

r 𝑓score

h
t

r

𝑓score

Figure 3.1.: Visualisation of the translational models TransE (left), TransH (center) and

RotatE (right) in the two-dimensional space.

It takes as input the entity and relation embeddings of a fact (h, r, t) and returns its

plausibility, in other words the likelihood that the fact is true. The exact definition of the

score function depends on the design of the knowledge graph embedding model. Given

two facts (ℎ1, 𝑟1, 𝑡1) and (ℎ2, 𝑟2, 𝑡2), the first is considered more plausible than the second

if 𝑓𝑠𝑐𝑜𝑟𝑒 (ℎ1, 𝑟1, 𝑡1) > 𝑓𝑠𝑐𝑜𝑟𝑒 (ℎ2, 𝑟2, 𝑡2). The score function typically encodes a distance in the

embedding space and is trained to assign higher scores to true facts than to false facts.

True and false facts are called positive facts and negative facts.

3.1.1. Prominent Knowledge Graph Embedding Methods

In this section, some prominent knowledge graph embedding methods are presented. They

differ mainly in the way they represent entities and relations and in their definition of

the score function. Numerous knowledge graph embedding methods were published in

recent years. For a more comprehensive overview, the following surveys can be considered

[173, 91, 201, 43]. In the literature, knowledge graph embedding methods are commonly

categorised into translational models, semantic matching models and neural models. Neural
models for knowledge graph embeddings are introduced in Section 3.2 together with graph

neural networks.

3.1.1.1. Translational Models

Translational models represent entities and relations of a knowledge graph as points in the

Euclidean vector space and binary relations as translations or other geometric operations.

The plausibility of the facts is calculated with a distance function between the projected

entities.

The seminal translational model is TransE [26] where entities and relations are represented

as vectors h, t, r ∈ R𝑑 . Facts are modelled as translations from head to tail embeddings, so

that h + r ≈ t. Given a fact (ℎ, 𝑟, 𝑡), the score function in TransE is defined as the distance

between the head and tail vectors after applying the relation as translation:

𝑓score(ℎ, 𝑟, 𝑡) = −∥h + r − t∥𝑝, (3.2)

30

3.1. Knowledge Graph Embeddings

where 𝑝 is the L-𝑝 norm. Although TransE is scalable due to its simplicity, it has several

drawbacks. First, it can only represent one-to-one relations, since it forces different entities

to the same representation in many-to-one, one-to-many and many-to-many relations [204,

132]. For example, given the two facts (ℎ, 𝑟, 𝑡1), (ℎ, 𝑟, 𝑡2) ∈ F , the score function returns

h + r ≈ t1 and at the same time h + r ≈ t2. This results in t1 ≈ t2. Furthermore, TransE

cannot model symmetric relations. The facts (ℎ, 𝑟, 𝑡) and (𝑡, 𝑟, ℎ) can only be captured

simultaneously if r = 0.

As an extension to TransE, TransH [204] is proposed, which can model one-to-many,

many-to-one and many-to-many relations. Each relation is represented by the normal

vector of a hyperplanew𝑟 ∈ R𝑑 and a vector d𝑟 ∈ R𝑑 lying in the hyperplane. The head and

tail vectors are at first projected in their relation-specific hyperplanes h⊥ = h−w⊤𝑟 hw𝑟 and

t⊥ = t −w⊤𝑟 tw𝑟 . Based on the projected representations, the score in TransH is calculated

as

𝑓score(ℎ, 𝑟, 𝑡) = − ∥h⊥ + d𝑟 − t⊥∥22 . (3.3)

TransE and TransH are visualised in Figure 3.1.

In RotatE [188], the entities and relations are vectors h, r, t ∈ C𝑑 in the complex space.

Relations are modelled as rotations from the head to the tail entity in the complex space

as t = h ⊙ r. ⊙ denotes the element-wise Hadamard product. With norm-preserving

real parts |𝑟𝑖 | = 1 for each 𝑖 ∈ {1, . . . , 𝑑}, 𝑟𝑖 is expressed as 𝑒𝑖𝜃𝑟,𝑖 , which corresponds to a

counter-clockwise rotation by 𝜃𝑟,𝑖 . RotatE is visualised in Figure 3.1. The score function in

RotatE is denoted as

𝑓score(ℎ, 𝑟, 𝑡) = −∥h ⊙ r − t∥. (3.4)

Unlike TransE and TransH, RotatE can model symmetry by setting all rotation phases

in all dimensions to multiples of 𝜋 , while TransE and TransH force symmetric relations

onto the same vector. However, RotatE cannot represent one-to-many, many-to-one and

many-to-many relations [3].

BoxE [3] is a spatio-relational embedding model that encodes relations as regions in the

embedding space (boxes) and entities as a tuple of two vectors (𝒆, 𝒃) ∈ R2𝑑 , where e defines
the base position of the entity and b defines its translational bump from their base position

to the final embedding depending on the co-occurrence of entities in a fact. In other words,

entities that co-occur in a fact translate each other. The concept of BoxE is illustrated in

Figure 3.2. The entity embedding for an entity e𝑖 ∈ R𝑑 is expressed as

e(ℎ,𝑟,𝑡)
𝑖

= (e𝑖 − b𝑖) + bℎ + b𝑡 . (3.5)

The embedding of an entity is fact-dependent, so that different embeddings are introduced

for an entity. This is why BoxE is suitable for modelling many-to-many, many-to-one and

one-to-many relations. Relations are modelled as rectangles, and a two-ary relation 𝑟 ∈ R
introduces two rectangles r(1) and r(2) ∈ R2𝑑 . The lower and upper bounds of a relation

box are denoted as l(𝑖) and u(𝑖) and the box center is defined as 𝒄 (𝑖) = 0.5

(
𝒍 (𝑖) + 𝒖 (𝑖)

)
. The

width of the box is 𝒘 (𝑖) = 𝒖 (𝑖) − 𝒍 (𝑖) + 1 and is increased by one in all dimensions. The

motivation for BoxE is that entity representations must occur in the box of a relation for a

31

3. Sub-symbolic Reasoning

CapitalOf(1)

CitizenOf(1)

Trudeau

CapitalOf(2)

CitizenOf(1)

Canada

citizenOf(Trudeau,Canada) ✓
capitalOf(Trudeau,Canada) ✗

Figure 3.2.: Example of embeddings in BoxE. The entities Trudeau and Canada trans-

late each other when they co-occur in a fact. The relations capitalOf

and citizenOf have two boxes because they have arity two. The

fact CitizenOf(Trudeau, Canada) is considered true in the embedding

model because both points occur in the boxes of the relation CitizenOf.

CapitalOf(Trudeau,Canada) is considered false because they do not occur

both in the box of CapitalOf. The figure is inspired from [3].

fact to be true. Therefore, the score function is based on the distance between the entity

embedding 𝒆 (ℎ,𝑟,𝑡)
𝑖

and the target relation box 𝒓 (𝑖) :

dist

(
𝒆 (ℎ,𝑟,𝑡)
𝑖

, 𝒓 (𝑖)
)
=


���𝒆 (𝑒ℎ,𝑟 ,𝑒𝑡)𝑖

− 𝒄 (𝑖)
��� ⊘𝒘 (𝑖) if 𝒆𝑖 ∈ 𝒓 (𝑖)���𝒆 (𝑒ℎ,𝑟 ,𝑒𝑡)𝑖

− 𝒄 (𝑖)
��� ⊙𝒘 (𝑖) − 𝜅 otherwise.

(3.6)

Element-wise multiplication and division are denoted as ⊙ and ⊘. 𝜅 is a width-dependent

factor. Finally, the score function over all 𝑛 entities and relation boxes is

𝑓𝑠𝑐𝑜𝑟𝑒 (ℎ, 𝑟, 𝑡) =
𝑛∑︁
𝑖=1

dist (𝒆𝒓 (𝑒1,...,𝑒𝑛)𝒊 , 𝒓 (𝒊)
)

𝑝
. (3.7)

Unlike the previous translational models, BoxE can be applied to graphs with n-ary

relations [3].

3.1.1.2. Semantic Matching Models

Semantic matching models use tensor decomposition methods to construct a plausibility

score for a fact given the entity vectors and a relation matrix.

DistMult [214] represents entities as vectors h, t ∈ R𝑑 and a relation as diagonal matrix

W𝑟 ∈ R𝑑×𝑑 . The score of a fact is computed as

𝑓𝑠𝑐𝑜𝑟𝑒 (ℎ, 𝑟, 𝑡) = h𝑇W𝑟 t =
𝑑∑︁
𝑖=1

h𝑖 · diag (W𝑟)𝑖 · t𝑖 . (3.8)

32

3.1. Knowledge Graph Embeddings

Figure 3.3.: Illustration of DistMult on the left and QuatE on the right. The figure is taken

from [30]

The score function of DistMult is shown in Figure 3.3. Antisymmetric relations cannot

be modelled, since 𝑓score(ℎ, 𝑟, 𝑡) = 𝑓score(𝑡, 𝑟, ℎ) which forces all relations to be symmetric

[79].

ComplEx [194] extends DistMult in the complex space to overcome this limitation. Entities

and relations are modelled as vectors in the complex space h, r, t ∈ C𝑘 and the score

function is defined based on the Hadamard product and the real component 𝑅𝑒 (·) of the
complex-valued output vector.

𝑓score(ℎ, 𝑟, 𝑡) = Re(h ⊙ r ⊙ t) (3.9)

Thanks to the commutativity of the Hadamard product in the complex space, ComplEx

can model antisymmetric relations.

QuatE [227] uses hypercomplex quaternions, where each value has one real and three

imaginary components: 𝑄 = 𝑎 + 𝑏i + 𝑐j + 𝑑k. In this notation 𝑎, 𝑏, 𝑐, 𝑑 are real numbers

and i, j, k are imaginary parts. Quaternions allow more expressive rotations in two planes

to model entities and relations, see Figure 3.3. Given a fact (ℎ, 𝑟, 𝑡), the representation
of the head entity ℎ and the tail entity 𝑡 are h =

{
𝑎ℎ + 𝑏ℎi + 𝑐ℎj + 𝑑ℎk : 𝑎ℎ, 𝑏ℎ, 𝑐ℎ, 𝑑ℎ ∈ R𝑘

}
and t = {𝑎𝑡 + 𝑏𝑡 i + 𝑐𝑡 j + 𝑑𝑡k : 𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡 , 𝑑𝑡 ∈ R𝑘

}
. The relation 𝑟 is represented by r =

{𝑎𝑟 + 𝑏𝑟 i + 𝑐𝑟 j + 𝑑𝑟k : 𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟 , 𝑑𝑟 ∈ R𝑘
}
. The score function computes the Hamilton prod-

uct ⊗ between the rotated head with a normalized relation vector r⊳ and the tail entity:

𝑓𝑠𝑐𝑜𝑟𝑒 (ℎ, 𝑟, 𝑡) = h ⊗ r⊳ · t. (3.10)

Leveraging representations in the hypercomplex space, QuatE enables richer and more

expressive semantic matching between head and tail entities through the Hamilton product.

QuatE can be seen as a generalization of DistMult and ComplEx.

3.1.2. Loss Function

The training goal in knowledge graph embeddings is to find a representation of the

graph that maximises the plausibility of positive facts while minimising the plausibility of

negative facts. Several loss functions L are considered.

33

3. Sub-symbolic Reasoning

The Margin-based ranking loss [26, 204] encourages the discrimination between the scores

of positive and negative facts. It is defined as

L =
∑︁
(ℎ,𝑟,𝑡)∈F

∑︁
(ℎ′,𝑟 ′,𝑡 ′)∈N

max (0, 𝑓𝑠𝑐𝑜𝑟𝑒 (h, r, t) + 𝛾 − 𝑓𝑠𝑐𝑜𝑟𝑒 (h′, r′, t′)) , (3.11)

where F is the set of positive facts, N is the set of negative facts and 𝛾 > 0 is a hyperpa-

rameter defining the margin between positive and negative facts.

The Binary cross entropy loss [55] takes into account the labels 𝑙 : E × R × E → {0, 1}𝑛 for
positive and negative facts and measures the distance between them and the predicted

scores for the facts 𝑓𝑠𝑐𝑜𝑟𝑒 : E × R × E → R𝑛 . The binary cross entropy loss over 𝑛 facts is

defined as

L = −1
𝑛

∑︁
𝑖

(𝑙𝑖 · log (𝑓𝑠𝑐𝑜𝑟𝑒 (h, r, t)𝑖) + (1 − 𝑙𝑖) · log (1 − 𝑓𝑠𝑐𝑜𝑟𝑒 (h, r, t)𝑖)) . (3.12)

Other popular loss functions used in the context of knowledge graph embeddings are the

mean squared error loss or the adversarial sampling loss [188, 151].

3.1.3. Negative Sampling

As mentioned above, knowledge graphs usually contain only positive facts. However,

negative facts are essential during training to avoid overgeneralization to the positive

facts. For this reason, negative facts are commonly generated through sampling under

the stochastic local closed world assumption [26]. Assuming that the unobserved facts are

false, a set of negative factsN is created by randomly replacing the head or tail entity of a

positive fact with another entity in the graph [26]. This way, a set of negative facts N is

obtained:

N𝑡 (ℎ, 𝑟) = {(ℎ, 𝑟, 𝑡 ′) | 𝑡 ′ ∈ E ∧ 𝑡 ′ ≠ 𝑡}
Nℎ (𝑟, 𝑡) = {(ℎ′, 𝑟 , 𝑡) | ℎ′ ∈ E ∧ ℎ′ ≠ ℎ}

N =
⋃
(ℎ,𝑟,𝑡)∈K

N𝑡 (ℎ, 𝑟) ∪ Nℎ (𝑟, 𝑡).
(3.13)

Nℎ is the set of negative facts with corrupted heads and N𝑡 is the set of negative facts
with corrupted tails. Together, they form the set of negative factsN . In the following, this

method is termed uniform negative sampling [9].

The generation of negative facts is acknowledged to be a challenging problem [121, 229,

228, 215]. The random replacement of head and tail entities carries the risk of generating

false negative facts. However, since the number of true positive facts in a graph is generally

orders of magnitude smaller than the potential set of true negative facts (|N | ≫ |F |), the
probability is small [9]. Some works introduce techniques that are based on the structure

of the graph to decrease the probability of generating false negative facts [7, 229]. For

example, Bernoulli negative sampling [204] is introduced, where the characteristic of the

relation (one-to-many, many-to-one) is decisive for replacing the head or the tail.

34

3.1. Knowledge Graph Embeddings

3.1.4. Evaluation

Knowledge graph embedding methods are evaluated with ranking-based metrics in the

context of a link prediction task [171, 9]. They quantify how successfully the model

can complete an incomplete fact by scoring candidate entities. A distinction is made

between head prediction (?, 𝑟 , 𝑡) and tail prediction (ℎ, 𝑟, ?), where missing heads or tails

are predicted. Some works also consider relation prediction (ℎ, ?, 𝑡) [125]. Since the scores
are only meaningful in a comparative sense, rank-based metrics are used. For this purpose,
the set of negative facts N is created by uniform negative sampling based on the facts in

the test set, see Section 3.1.3. Then, the score function of the knowledge graph embedding

model is used to score all facts, including the true test facts. The rank of a fact is its position
in the sorted list of scores. The positive test facts should preferably receive a higher rank

than the negative test facts.

Rank-based metrics aggregate the ranks of a set of positive facts F in the test set into one

metric. They measure the ability of a model to discriminate positive and negative facts.

The following rank-based metrics are commonly used for knowledge graph embedding

evaluation in the literature.

• The Mean Rank (MR) is the average rank of the positive fact 𝑓 ∈ F against the

negative facts:

MR(F) = 1

|F |
∑︁
𝑓 ∈F

rank(𝑓). (3.14)

The smaller its value, the better the model performance.

• The Mean Reciprocal Rank (MRR) is defined as the mean of the reciprocal ranks:

MRR(F) = 1

|F |
∑︁
𝑓 ∈F

1

rank(𝑓) . (3.15)

Unlike MR, MRR has a fixed range of values from 0 to 1, which makes it easier to

interpret. Higher values indicate better performance.

• The Hits@k denotes the proportion of positive facts whose rank does not exceed a

constant value 𝑘 with 𝑘 > 0 among all positive facts:

Hits@k (F) = |{𝑓 ∈ F | rank(𝑓) ≤ 𝑘}||F | . (3.16)

The smaller 𝑘 , the stricter is the metric. The Hits@k also lies between 0 and 1 where

larger values indicate better performance.

35

3. Sub-symbolic Reasoning

3.1.5. Model Expressiveness and Inductive Capacity

In principle, knowledge graph embedding methods are seen as dimensionality reduction

methods. The fewer dimensions and less expressiveness a model has, the more regularities

are captured in the representations. However, this carries the risk of unintended inferences

[79]. It is therefore desirable that a model with enough parameters can theoretically

capture the entire training graph and accurately distinguish positive and negative facts. A

model with this property is called fully expressive [3, 108].

Definition 3.1.1 (Full expressiveness). Given the setW of all possible facts over a finite
set of relations R, a knowledge graph embedding modelM is fully expressive if, for any
two disjoint sets F ⊆ W of positive facts and N ⊆ W of negative facts, there exists a
finite-dimensional model configuration forM that maps all facts inW to True and all facts
in F to False.

While the expressiveness of a model determines whether the training graph can be fully

captured with a sufficient number of parameters, the inductive capacity refers to the ability

of a model to generalize beyond the training set. The inductive capacity of knowledge

graph embeddingmethods is studied by theoretically analyzing whether common inference

patterns can be captured. An inference pattern is a specification of a logical property that

can exist in a knowledge graph, which, once learned, allows further inferences from

existing facts. The following inference patterns are commonly studied in the literature [3,

108, 30].

Definition 3.1.2 (Symmetry). Given a relation 𝑟 ∈ R, a symmetry pattern is a rule of the
form ∀x, y : 𝑟 (𝑥,𝑦) → 𝑟 (𝑦, 𝑥), where 𝑟 ∈ R.

Definition 3.1.3 (Antisymmetry). Given a relation 𝑟 ∈ R, an antisymmetry pattern is a
rule of the form ∀x, y : 𝑟 (𝑥,𝑦) → ¬𝑟 (𝑦, 𝑥), where 𝑟 ∈ R.

Definition 3.1.4 (Inversion). Given the relations 𝑟1, 𝑟2 ∈ R, an inversion pattern is a rule
of the form r2 if ∀x, y : r2(x, y) → r1(y, x), where 𝑟1 ≠ 𝑟2 ∈ R.

Definition 3.1.5 (Composition). Given the relations 𝑟1, 𝑟2, 𝑟3 ∈ R, a composition pattern
is a rule of the form ∀x, y, z : r2(x, y) ∧ r3(y, z) → r1(x, where z), 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ∈ R.

Definition 3.1.6 (Mutual exclusion). Given the relations 𝑟1, 𝑟2 ∈ R, a mutual exclusion
pattern is a rule of the form ∀x, y: r1(x, y) ∧ r2(x, y) →⊥, where 𝑟1 ≠ 𝑟2 ∈ R.

Definition 3.1.7 (Hierarchy). Given the relations 𝑟1, 𝑟2 ∈ R, a hierarchy pattern is a rule
of the form ∀x, y: r2(x, y) ∧ r2(x, y) → r1(x, y), where 𝑟1 ≠ 𝑟2 ∈ R.

36

3.1. Knowledge Graph Embeddings

Pattern BoxE ComplEx DistMult QuatE RotatE TransE TransH

Symmetry ✓ ✓ ✓ ✓ ✓ ✗ ✗
Antisymmetry ✓ ✓ ✗ ✓ ✓ ✓ ✓

Inversion ✓ ✓ ✗ ✓ ✓ ✓ ✓
Composition ✗ ✗ ✗ ✗ ✓ ✓ ✓
Hierarchy ✓ ✓ ✓ ✓ ✗ ✗ ✗

Mutual exclusion ✓ ✓ ✓ ✓ ✓ ✓ ✓

Full expressiveness ✓ ✓ ✗ ✓ ✗ ✗ ✗

Table 3.1.: The inference patterns captured by the presented knowledge graph embedding

methods. The results are taken from the literature [3, 79, 188, 30].

Space Complexity Time Complexity

TransE O(|E|𝑑 + |R|𝑑) O(𝑑)
TransH O(|E|𝑑 + |R|𝑑) O(𝑑)
RotatE O(|E|𝑑 + |R|𝑑) O(𝑑)
BoxE O(|E| + 2|R |𝑑) O(2𝑑)
DistMult O(|E|𝑑 + |R|𝑑) O(𝑑)
ComplEx O(|E|𝑑 + |R|𝑑) O(𝑑)
QuatE O(|E|𝑑 + |R|𝑑) O(𝑑)

Table 3.2.: Comparison of the space and time complexity of knowledge graph embedding

methods. |E | is the number of entities in the graph and |R | is the number of

relations. 𝑑 is the dimension of the vector representation. The results are taken

from the literature [9].

3.1.6. Comparison of Knowledge Graph Embedding Methods

This section gives an overview of how the presented knowledge graph embedding methods

compare with each other in the aspects of expressiveness, complexity and inductive

capacity. The results are taken from the literature [3, 79, 188, 30] and are summarized in

Table 3.1.

Expressiveness. While DistMult, RotatE, TransE, TransH and DistMult are known to be

not fully expressive, BoxE was shown to be fully expressive [3]. The semantic matching

models ComplEx and QuatE are fully expressive, but generally less interpretable than the

translational models [3].

Complexity. The above-mentioned approaches also differ in terms of the number of

parameters and their time complexity, see Table 3.2. All the presented embedding methods

have a constant time complexity. Regarding space complexity, BoxE additionally stores

the translational bump vectors.

Inductive Capacity. Further, the methods differ in their inductive capacity. Regarding

symmetry, TransE and TransH cannot represent symmetric relations, since they would

force the relation vector of a symmetric relation to be zero. On the contrary, RotatE can

represent symmetry if the rotation consists only of multiples of 𝜋 . In DistMult, relations

37

3. Sub-symbolic Reasoning

are inherently symmetric, since 𝑓 (ℎ, 𝑟, 𝑡) = 𝑓 (𝑡, 𝑟, ℎ) holds for any relation. BoxE can

capture symmetric relations by defining equal boxes. QuatE can represent symmetric

relations by setting the imaginary components to zero.

Antisymmetry can be captured by the translational models TransE, TransH, BoxE and

RotatE. Since all relations in DistMult are symmetric, it cannot handle antisymmetry.

ComplEx and QuatE, however, can canpture antisymmetry by using only imaginary

embeddings.

The translational models TransE, RotatE and TransH can capture inversion when 𝑟1 =

−𝑟2. However, limitations occur when it comes to multiple inverse relations, such as

𝑟1(𝑥,𝑦) ↔ 𝑟2(𝑦, 𝑥), 𝑟2(𝑥,𝑦) ↔ 𝑟3(𝑦, 𝑥), 𝑟3(𝑥,𝑦) ↔ 𝑟1(𝑦, 𝑥). This implies the symmetry of

𝑟1: 𝑟1(𝑥,𝑦) ↔ 𝑟1(𝑦, 𝑥), which cannot be captured by TransE and TransH, while it can be

captured by RotatE. BoxE captures inversion by setting 𝑟
(1)
1

and 𝑟
(2)
2

as well as 𝑟
(2)
1

and 𝑟
(1)
2

to identical boxes. DistMult cannot capture inversion, while ComplEx and QuatE can [3,

227, 194].

The translational models TransE, TransH and RotatE cannot capture hierarchy as this

would implicitly enforce relational equivalence. The semantic matchingmodels can capture

hierarchy, but not in a generalized way. To simultaneously satisfy the rules 𝑟1(𝑥,𝑦) →
𝑟3(𝑥,𝑦) and 𝑟2(𝑥,𝑦) → 𝑟3(𝑥,𝑦), it must hold that 𝑟1(𝑥,𝑦) → 𝑟2(𝑥,𝑦) or 𝑟2(𝑥,𝑦) → 𝑟1(𝑥,𝑦)
[79]. BoxE can capture hierarchies when the box of 𝑟1 encapsulates the box of 𝑟2.

Composition can be captured by translational models. In TransE and TransH, a relation 𝑟3
is composed of 𝑟1 and 𝑟2 if 𝑟1 + 𝑟2 = 𝑟3. In RotatE, this is the case for 𝑟1 ⊙ 𝑟2 = 𝑟3. However,
generalized compositions withmultiple relations cannot be captured as 𝑟1(𝑥,𝑦)∧𝑟2(𝑦, 𝑧) →
𝑟3(𝑥, 𝑧) and 𝑟1(𝑥,𝑦) ∧ 𝑟4(𝑦, 𝑧) → 𝑟3(𝑥, 𝑧) force 𝑟2 = 𝑟4 [3]. The design of the translational

bumps prevents BoxE from capturing compositions [3]. It is shown that ComplEx and

DistMult cannot capture composition patterns [79].

The aforementioned translational models TransE, TransH, RotatE and BoxE can all capture

mutual exclusion. ComplEx and DistMult cannot capture mutual exclusion for several

relations as 𝑟1(𝑥,𝑦) ∧ 𝑟2(𝑥,𝑦) →⊥ and 𝑟1(𝑥,𝑦) ∧ 𝑟3(𝑥,𝑦) →⊥ enforces 𝑟2 = 𝑟3.

3.1.7. Limitations

While knowledge graph embedding methods have shown various capabilities in capturing

relationships between entities in knowledge graphs, they also suffer from a number of

limitations.

Transductive learning. First, most knowledge graph embedding approaches are inherently

transductive. They can only learn embeddings for entities and relations observed in the

training data. Inference about unseen entities poses a significant challenge. One way

to enable inductive inferences about unseen nodes is to use features such as text and

images, in node-attributed graphs [2, 225, 193]. However, the majority of knowledge graph

embedding approaches are not designed to process such information.

38

3.2. Graph Neural Networks

Robustness to noise. As mentioned in Section 1.1.2, knowledge graphs may be subject

to noise. In contrast, many state-of-the-art knowledge graph embedding methods do not

explicitly take noise in the training graph into account. This assumption is often unrealistic,

potentially leading to bias in the learned embeddings and performance degradation [23].

Interpretability. The interpretability of knowledge graphs may be compromised in the

vector space. The learned embeddings do not directly translate into human-understandable

representations. Interpreting the exact meaning of individual dimensions or components

in the embedding space can be challenging. In general, interpretability decreases as the

complexity of the embedding space increases.

Incompleteness. Knowledge graphs are typically trained under the local closed-world

assumption where negative facts are generated with uniform negative sampling, see Sec-

tion 3.1.3. However, given that many real-world knowledge graphs are highly incomplete,

this procedure has the potential to introduce false negative facts. This can lead to bias

in the learned embeddings and incorrect inferences [23]. Furthermore, the commonly

used rank-based metrics are inappropriate under the open world assumption and become

misleading and inconsistent in the context of incomplete data [216]. In addition, the ability

to learn patterns in a knowledge graph depends on the prevalence of the pattern in the

training graph. Incomplete information can therefore lead to the failure to capture patterns

at inference [171, 78].

Capturing semantics. Although the ability of knowledge graph embeddings to capture

common inference patterns is widely discussed in the state-of-the-art [3, 188, 30], capturing

compositionality and especially transitivity as general patterns remains a challenging

problem [23]. Furthermore, complex constraints are often neglected [36]. For this reason,

knowledge graph embeddings often fail to be compliant with prior knowledge.

Neglecting prior knowledge. Further, many knowledge graphs follow a given schema or

ontology that formulates prior knowledge about the relations and entities in the graph, as

mentioned in Section 1.1.2. Common knowledge graph embedding approaches focus only

on facts and ignore ontological information [36, 79, 77, 102]. Consequently, there is no

guarantee that the learned embeddings obey the rules of prior knowledge, as this depends

on the facts observed during training as well as on the inductive capacity of the chosen

model. Thus, knowledge graph embeddings risk losing semantics in the embedding space

and do often not provide predictable inference [83].

3.2. Graph Neural Networks

While knowledge graph embeddings find unique embeddings for entities and relations

that capture the structure of a knowledge graph, the idea of Graph Neural Networks (GNNs)
[180] is to refine node representations guided by the graph topology. In essence, GNNs

transform node vector representations by iteratively updating them with permutation

39

3. Sub-symbolic Reasoning

h𝑘
1

h𝑘

2

h𝑘
3

h𝑘
4

h𝑘
5

h𝑘
6

𝑐
1
6

𝑐
11

𝑐
1
2

𝑐13

𝑐 1
4

𝑐
1
5

h𝑘+1
1

Figure 3.4.: Visualisation of the update of the representation h1 of the target node 𝑣1 in the

𝑘-th GCN layer. The representations of the first-order neighbours h𝑘
2
, . . . , h𝑘

6

are weighted with normalization factors 𝑐𝑢,𝑣 and aggregated to derive the

updated representation h𝑘+1
1

for 𝑣1.

invariant message passing layers. GNNs typically expect as input a node-attributed graph.

A node 𝑣 to be represented is called target node. In detail, the target node receives messages

from its adjacent nodes that are used to update the target node’s vector representation x𝑘 .
In vector notation, the function of the 𝑘-th message passing layer is formalized as

h𝑘+1𝑣 = combine
(
h𝑘𝑣 , aggregate

(
𝑚𝑣,𝑢 |𝑢 ∈ N1(𝑣)

))
. (3.17)

Here, h𝑘𝑣 ∈ R𝑑 is the 𝑑-dimensional vector representation of the target node 𝑣 of the

previous layer. The neighbourhood N1(𝑣) is the first-order neighbourhood of 𝑣 . In the

following notations, the index is omitted for readability. The messages𝑚𝑣,𝑢 are defined

based on the node representations h𝑣 , h𝑢 and the edge features e𝑣,𝑢 . The operators combine
and aggregate denote functions where aggregate is permutation invariant.

2

An arbitrary number 𝐿 of GNN layers can be stacked. This way, node representations

are refined by incorporating 𝐿-hop neighbourhood information which provides a strong

inductive bias on the graph structure. The functions aggregate and combine contain

learnable parameters that are optimized in an end-to-end supervised manner in the context

of downstream tasks such as node classification. GNN methods differ in the way they

aggregate information across their layers. In the following, graph convolutional networks,
graph attention networks and relational graph neural networks are introduced.

3.2.1. Graph Convolutional Networks

Graph Convolutional Networks (GCNs) [115] are known for generalizing the convolution

operation in convolutional neural networks [122] to graphs. They update node representa-

tions by considering the weighted sum of the local neighbourhood. The parameters are

2
The notation h𝑣 is not to be confused with the notation ℎ for the head entity of a fact in Section 3.1. h𝑣 in
this section describes a vector representation for any node in a graph

40

3.2. Graph Neural Networks

𝛼𝑣,𝑢

a

s
o
f
t
m
a
x 𝑢

Wh𝑣 Wh𝑢

h𝑘
1

h𝑘
2

h𝑘
3

h𝑘
4

h𝑘
5

h𝑘
6

®𝛼
1
6

®𝛼
11

®𝛼
1
2

®𝛼13

®𝛼 14 ®𝛼15

h𝑘+1
1

concat/avg

Figure 3.5.: Visualisation of the update of the representation h1 of target node 𝑣1 in the 𝑘-th
GAT layer. Left: Illustration of the attention mechanism a(Wh𝑣 ,Wh𝑢) in GAT,

parametrized by a weight vector a ∈ R2𝑑 . Right: An illustration of multi-head

attention with 𝐾 = 3 by node 𝑣1 on its neighbourhood. Different arrow styles

and colors describe different attention heads. The aggregated features from

each head are concatenated or averaged to obtain h𝑘+1
1

. The figure is adapted

from [196].

shared across all nodes in the graphs. The function of the 𝑘-th GCN layer for target node

𝑣 is formalized as

h𝑘+1𝑣 = 𝜎
©­«

∑︁
𝑢∈N(𝑣)

1

𝑐𝑣,𝑢
W𝑘h𝑘𝑢

ª®¬ (3.18)

with 𝑐𝑢,𝑣 =
√︁
|N(𝑢) | · |N(𝑣) | and activation function 𝜎 (·). The update of the node repre-

sentation h𝑘𝑣 to h𝑘+1𝑣 is visualised in Figure 3.4. In matrix notation, the function of a GCN

layer is based on the normalised adjacency matrix D̃−
1

2 ÃD̃−
1

2 of the input graph:

H𝑘+1 = 𝜎
(
D̃−

1

2 ÃD̃−
1

2H𝑘W𝑘
)
. (3.19)

Here, Ã = A + I is the adjacency matrix with self-connections in the form of the identity

matrix I. Self-connections take the target node’s representation of the previous layer into

account. The diagonal matrix D̃ where D̃𝑖𝑖 =
∑
𝑗 Ã𝑖 𝑗 is used to normalize the updates of a

node. The matrices D̃, I, Ã,A have the dimension R𝑛×𝑛 . Further,W𝑘 ∈ R𝑑𝑘×𝑑𝑘+1 represent
the trainable weight matrices. The input and output dimensions of the layer are 𝑑𝑘 and

𝑑𝑘+1. For GCN, the aggregate function is the weighted average of the neighbouring node

representations. The combine function is the sum of the aggregated messages with the

node representation itself, normalized by the node degree.

3.2.2. Graph Attention Networks

While in GCNs the impact of neighbouring nodes is normalized by the node degree,

Graph Attention Networks (GATs) [196] employ the attention mechanism [195] to learn the

41

3. Sub-symbolic Reasoning

h𝑘
1

h𝑘

2

h𝑘
3

h𝑘
4

h𝑘
5

h𝑘
6

𝑐 𝑟
3

1,6

𝑐
𝑟1
1,2

𝑐
𝑟2
1,3

𝑐
𝑟 1

1
,4

𝑐
𝑟2
1,5

𝑐
𝑟3
1,5

h𝑘+1
1

sum

Figure 3.6.: Visualisation of the update of the representation h1 of target node 𝑣1 in the

𝑘-th RGCN layer. The graph has three different types of relations: 𝑟1, 𝑟2 and 𝑟3.

The relation-specific neighbourhoods are N𝑟1 (𝑣) = {𝑣2, 𝑣4}, N𝑟2 (𝑣) = {𝑣3, 𝑣5}
and N𝑟3 (𝑣) = {𝑣5, 𝑣6} with the respective normalization factors 𝑐

𝑟1
𝑣,𝑢 , 𝑐

𝑟2
𝑣,𝑢 and

𝑐
𝑟3
𝑣,𝑢 . The weight matricesW𝑟1

, W𝑟2
and W𝑟3

are relation-specific.

importance of a neighbouring node for the target node. To this end, a shared attention

mechanism a : R𝑑 × R𝑑 → R computes attention coefficients

𝑒𝑣,𝑢 = a(Wh𝑣 ,Wh𝑣) (3.20)

that determine the importance of the feature vector of node 𝑣 for node 𝑢. The attention

coefficients are calculated for the first-order neighbours and normalized with the softmax

function:

𝛼𝑣,𝑢 = softmax𝑢

(
𝑒𝑣,𝑢

)
=

exp

(
𝑒𝑣,𝑢

)∑
𝑗∈N(𝑣) exp

(
𝑒𝑣, 𝑗

) . (3.21)

The function of the 𝑘-th GAT layer is

h𝑘+1𝑣 = 𝜎
©­«

∑︁
𝑢∈N(𝑣)

𝛼𝑣,𝑢W𝑘h𝑘𝑢
ª®¬ . (3.22)

To stabilize the learning process, multi-head attention can be applied. Therefore, the

attention mechanism is executed 𝐾 times independently and the results are averaged or

concatenated. The computation of the attention weights and the function of a GAT layer

are visualised in Figure 3.5.

3.2.3. Relational Graph Neural Networks

The presented methods GCN and GAT are limited to homogeneous graphs. As extension

to this, Relational Graph Neural Networks (RGCNs) [181] apply the concept of GCN to

multi-relational graphs by introducing relation-specific weight matrices W𝑘
𝑟 ∈ R𝑑𝑘×𝑑𝑘+1 . In

42

3.2. Graph Neural Networks

an RGCN layer, the node features are transformed with the normalized sum of adjacent

edges:

h𝑘+1𝑣 = 𝜎
©­«
∑︁
𝑟∈R

∑︁
𝑢∈N𝑟 (𝑣)\𝑣

1

𝑐𝑟𝑣,𝑢
W𝑘

𝑟 h
𝑘
𝑢 +W𝑘

0
h𝑘𝑣

ª®¬ . (3.23)

The update function of a RGCN layer is shown in Figure 3.6. The set of neighbour nodes

of 𝑣 under the relation 𝑟 ∈ R is denoted as N𝑟 (𝑣). 𝑐𝑟𝑣,𝑢 is a relation-specific normalization

hyperparameter. The function of an RGCN layer is illustrated in Figure 3.6. Since the

number of trainable parameters increases rapidly with the number of relations, potentially

leading to overfitting, regularization methods are often applied in the context of RGCN

[181].

3.2.4. Neural Knowledge Graph Embeddings

Neural network layers and particularly graph neural network layers can also be used to

embed knowledge graphs. RGCNs, for example, are commonly used as link prediction

methods. While they can be applied in an inductive setting on node-attributed graphs,

they can also be used in an transductive context to learn and refine entity vectors. In this

case, the entity representations are randomly initialized and optimized together with the

weight matrices during training. In this context, the RGCN layers in Equation 3.23 serve

as encoders to update node representations and DistMult in Section 3.1 is employed as a

decoder to obtain a link prediction score. In this setting, RGCN is categorized as a neural

knowledge graph embedding method, since the layers of the graph neural network update

the representations of the entities. However, RGCN as a knowledge graph embedding

method is limited to the inductive capacity of the DistMult decoder.

Beyond RGCN, other methods based on neural network layers exist that can be used

refine knowledge graph embeddings. Prominent examples are Neural Tensor Networks
[187], ConvE [55] or ConvKB [155]. Furthermore, the experiments in [130] show that

message passing techniques are not necessarily helpful in the context of knowledge graph

embedding learning and link prediction and that equal performance can be achieved with

simple feedforward layers.

3.2.5. Limitations

Despite their effectiveness in refining representations of nodes based on graph structure,

graph neural networks have some limitations.

Oversmoothing and Oversquashing. With an increasing number of GNN layers, the mes-

sage passing calculation includes more nodes. In this case, the representations of different

nodes may converge to equal vectors, making them less distinguishable. This problem is

known as oversmoothing [199, 213, 175]. Moreover, the aggregation of too much infor-

mation into a single vector can lead to a representation that is less informative, which is

43

3. Sub-symbolic Reasoning

known as oversquashing. [15]. Therefore, the choice of an appropriate number of GNN

layers is important for learning meaningful representations.

Multi-relational and Heterogeneous Graphs. Some GNN methods are limited to certain

types of graphs. Many prominent graph neural networks, including GCN and GAT, are

designed for homogeneous graphs. However, many graphs in practice are multi-relational,

including knowledge graphs. Applyingmethods for homogeneous graphs to heterogeneous

graphs leads to the aggregation of disparate information, which can result in reduced

performance [32]. RGCN and other methods [223, 203] encode multiple relations in a graph

with separate matrices. However, these models are heavier in terms of parameters.

Interpretability. As a subcategory of deep neural networks, GNNs are used to learn

meaningful feature representations with their message passing layers [4]. Although they

are effective at capturing graph structure, they are difficult for humans to understand and

interpret because of their large number of parameters. Furthermore, no strong guarantees

are given that encoding with GNN is faithful and trustworthy at inference.

Scalability. Deep GNN architectures with many message passing layers can increase the

computational cost of training and inference. As the number of parameters in the model

grows, so does the computational complexity, making it difficult to scale GNNs to large

graphs. Further, the message passing itself aggregates the node neighbourhood, which

grows exponentially with the number of layers in the network. Several methods tackle

this problem with sampling techniques [80, 59, 221] or distributed training [62].

44

4. Neuro-Symbolic Reasoning

The previous chapters have introduced and exemplified relevant techniques and concepts

in the field of symbolic and sub-symbolic AI. Historically, the fields of symbolic and sub-

symbolic AI developed separately [100]. While symbolic AI was the dominant paradigm

in AI research before 1980, it received less attention after the major breakthroughs in deep

learning around the year of 2012 [122].

The two lines of research differ significantly. In sub-symbolic AI, problems are formalised

as a quantitative and differentiable objective function that is optimised using gradient

descent. This allows for efficient pattern recognition and feature extraction from high-

dimensional data without human intervention. For this reason, sub-symbolic approaches

are well suited for perception problems where raw sensor data is directly processed, such as

image and speech recognition. Sub-symbolic approaches are robust to noisy and imperfect

data. Furthermore, once the model parameters are trained, the methods usually scale well

at inference.

Symbolic AI does not achieve good marks in these aspects. Many approaches do not scale

well at inference, which limits their applicability in the context of real-world use cases.

Further, they rely on exact and symbolic presentations of knowledge that often fail to

capture noise and uncertainty [88, 141]. Nevertheless, despite the recent hype around

machine learning and deep learning, concerns are raised. Some voices call for more trust,

security, interpretability and accountability for deep neural networks, which are often

criticised as black-box models [68, 69, 142, 190]. In addition, sub-symbolic approaches are

highly dependent on data [189]. While they can process high-dimensional data, they also

require a rich and extensive data source. Their usefulness is limited in cases where data is

scarce and expensive. Even when expert knowledge is available, sub-symbolic AI does

often not provide mechanisms to exploit it. Furthermore, sub-symbolic methods are prone

Symbolic AI Sub-symbolic AI

Neuro
Symbolic
Integration

Figure 4.1.: Neuro-Symbolic Integration = Symbolic AI + Sub-symbolic AI

45

4. Neuro-Symbolic Reasoning

Symbolic Sub-symbolic
Discrete representations Continuous vector representation

Language-like representations Numeric representations

Reasoning Learning

Rigid and static Flexible and adaptive

Human intervention Automatic pattern extraction

Prior knowledge Inductive bias

Feature engineering Raw sensor data

Requires no data/small data Requires big data

Precise input Noisy or incomplete input

Reasoning problems Perceptual problems

Interpretable Black-box

Knowledge transfer Overfitting

Not scalable at inference Scalable at inference

Table 4.1.: Overview of the characteristics, strength and weaknesses of symbolic and sub-

symbolic AI. Some points are inspired from [100].

to overfitting and often suffer from limited generalization capacity beyond the training

data distribution [18].

Symbolic AI methods provide an answer to these limitations, despite their own previously

mentioned shortcomings. With their symbolic representations in formal logic, they offer a

high degree of comprehensibility and provable correctness that goes beyond statistical

assessment. The ability to explain and reason about intermediate steps and decisionmaking

makes symbolic AI approaches inherently interpretable. Furthermore, the use of symbolic

representations allows for leveraging expert knowledge, which is often compositional

and can be shared between closely related domains. Symbolic knowledge can also help in

situations where less data is available.

Thus, the strengths and weaknesses of both lines of research complement each other. In

view of this, neuro-symbolic AI [19, 88, 126, 67] explores the combination of both paradigms

in a favourable way, with the objective to leverage their mutual strengths and circumvent

their respective limitations, as visualised in Figure 4.1. Neuro-Symbolic AI has recently

gained increasing attention [107, 17, 90]. With an eye on the future, the field has been

described as a "path forward to much stronger AI systems" and even as a "major stepping

stone towards human-level artificial intelligence" [179]. The combination of sub-symbolic

and symbolic AI is also biologically motivated, as it strongly resembles human intelligence

and learning. Humans can learn from experience as well as from explanation. While the

former is intuitive and implicit, the latter is explicit and cognitive. These systems are also

designated as System 1 (fast thinking) and System 2 (slow thinking) [105]. The pattern-
matching abilities in neural networks learned through repetitive training correspond to

System 1, while symbolic reasoning corresponds to System 2.

46

4.1. Desiderata of Neuro-symbolic AI

4.1. Desiderata of Neuro-symbolic AI

Since the aim of neuro-symbolic AI is to combine the advantages of both fields in a

favourable way, some desired aspects of neuro-symbolic AI approaches are summarised as

follows.

• knowledge-aware
Neuro-symbolic methods should be able to take into account prior knowledge, such

as expert and common sense knowledge.

• robust
Neuro-symbolic approaches should be applicable to high-dimensional and raw data

that may be imperfect, with noise and incompleteness. Noise in data is understood

as random or irrelevant variations that are not part of the pattern to be learned.

A model is considered robust if its performance remains stable or is only slightly

affected by noise.

• scalable
Neuro-symbolic methods should be scalable. Their applicability should go beyond

toy problems and consider real-world scenarios that often involve large amounts of

data. Sub-symbolic techniques could benefit from symbolic knowledge to scale up

training, while symbolic techniques could benefit from sub-symbolic techniques to

speed up inference.

• interpretable
A model is considered as interpretable if humans can understand the cause and

reasoning steps of its predictions and decisions [150]. Symbolic techniques should

contribute interpretable representations and understandable reasoning processes to

neural black-box models.

• accurate
Neuro-symbolic methods should perform as well as or better than comparable purely

symbolic or sub-symbolic methods. This also means that neuro-symbolic methods

can potentially achieve similar results with the use of fewer resources.

A key challenge in neuro-symbolic integration is the symbol grounding problem [84]. While

sub-symbolic approaches rely on continuous and differentiable vector representations,

symbolic AI operates on discrete and language-like representations. Translating repre-

sentations from one to another while preserving relevant information is relevant for the

design of neuro-symbolic AI approaches.

In the state-of-the-art, several ways are proposed to achieve the integration of symbolic and

sub-symbolic AI approaches. In the following sections, several neuro-symbolic methods

will be presented. Since the focus in this thesis lies on graph-structured data, Section 4.2

introduces general neuro-symbolic frameworks and discusses their applicability to graphs.

Then, Section 4.3 presents methods specifically designed for knowledge graphs.

47

4. Neuro-Symbolic Reasoning

Knowledge in the loss

function

Learning

K

NN

Knowledge as additional

layer

Learning

NN

K

Neural networks in a logic

program

Learning

NN

K

Figure 4.2.: Schematic illustration of ways to integrate knowledge with neural networks

for general neuro-symbolic frameworks.

4.2. Prominent Neuro-symbolic Frameworks in the Context of
Graph Data

In this section, the neuro-symbolic frameworks Neural Probabilistic Programming [139, 95],
Logic Tensor Networks [14] and Knowledge Enhanced Neural Networks [48] are discussed.
The main difference between these approaches is the way in which they address the

symbolic grounding problem and integrate their symbolic and sub-symbolic components,

as visualizes in Figure 4.2. Neural Probabilistic Programming approaches employ neural

predicates in a logic program. Logic Tensor Networks represent a logic program in fuzzy

logic and encode it as a loss function of a differentiable learning problem. Knowledge

Enhanced Neural Networks encode logical rules as differentiable layers that modify the

predictions of a neural network. The following literature can be consulted for a more

extensive overview [88, 50, 13, 67].

4.2.1. Neural Probabilistic Programming

DeepProblog [139] is a neural probabilistic programming language based on ProbLog, see

Section 2.2. In essence, it extends ProbLog with neural predicates. While ProbLog assumes

that the fact probabilities 𝑝 :: 𝑓 are known, neural predicates act as perception model

M𝜃 with learnable parameters 𝜃 , which transforms input data into a probabilistic fact.

Therefore, the output of a neural network 𝑌 given an input 𝑋 is normalized to [0, 1] ⊂ R
and interpreted as probability in the ProbLog program. Neural predicates thus act as

a bridge between the logic program and the perception of the input data. A dataset in

DeepProblog is considered as a set of tuples Q consisting of sensor data x ∈ R𝑑 , and labels

with desired success probabilities 𝑞 for the queries. For each data point of the dataset

(x, 𝑞), the neural predicates transform x into a probabilistic fact 𝑝 (x) :: 𝑓 that is captured
by a Datalog program.

48

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

Example 4.2.1 (DeepProblog). Consider the MNIST addition as an example. Given two

images of handwritten digits, the task is to determine the sum of the digits in the images.

The dataset contains tuples of two images and the sum of the digits in the images, e.g. ⟨ (,

), 8 ⟩. Two neural predicates are used to recognise the handwritten digits in the images

and predict one of the values in {0, . . . , 9}. A neural predicate is formalized as follows:

M𝜃 (mnist_net, x, [0, ..., 9]) :: digit(𝑋,𝑌).

For example, the output for the image would be a sequence of ten truth values

0.01 :: digit(, 0), 0.3 :: digit(, 1), . . . , 0.1 :: digit(, 9),

that are interpreted as probabilistic facts in the DeepProbLog program. For example,

the fact 0.3 :: digit(, 1) describes that the image is recognized as digit 1 with

probability 0.3. Further, the concept of addition is introduced in the logic program.

1 M𝜃(mnist_net, X, [0, ... , 9]) :: digit(X,Y)

2 addition(X,Y,Z) :- digit(X, "N1"), digit(Y, "N2"), Z = N1 + N2

Inference in DeepProblog works essentially as in Problog, based on weighted model

counting, but the prediction of the neural predicates are used as fact probabilities, see

Section 2.2. However, in order to determine the parameters of the neural predicates,

DeepProbLog relies on a training stage. The goal is to learn the parameters 𝜃 of the

perception modelM𝜃 . The training objective is the loss L of the output probability of

the program and the desired success probability 𝑞 of the query, averaged over all samples

(𝑝 (x), 𝑞) ⊂ Q.
argmin

x

1

|Q|
∑︁
(𝑞,𝑝)∈Q

L
(
𝑃𝜃X=x(𝑝), 𝑞

)
. (4.1)

The final success probability is calculated in the logic program 𝑃𝜃X=x(𝑝) In DeepProbLog,

only the success probability of the query is known and used as supervision. Since no

intermediate labels are given for the neural predicates, the gradients must be derived in

the logic component in order to perform backpropagation and update the neural network

parameters during training, despite the lack of direct supervision. To define gradient

updates in logic, DeepProbLog relies on a gradient semiring. It determines how probabilities

and their differentiation are handled when reasoning with a logic program. The elements

of gradient semiring are tuples

(
𝑝,

𝜕𝑝

𝜕𝑥

)
, where 𝑝 is the probability of a probabilistic fact

and
𝜕𝑝

𝜕𝜃
is the partial derivative of that probability with respect to the parameter 𝜃 . Then,

the semiring addition ⊕, multiplication ⊗ and their neutral elements are defined as(
𝑎1,
−→𝑎2

)
⊕

(
𝑏1,
−→
𝑏2

)
=

(
𝑎1 + 𝑏1,−→𝑎2 +

−→
𝑏2

)
, 𝑒⊕ = (0,−→0)(

𝑎1,
−→𝑎2

)
⊗

(
𝑏1,
−→
𝑏2

)
=

(
𝑎1𝑏1, 𝑏1

−→𝑎2 + 𝑎1
−→
𝑏2

)
, 𝑒⊗ = (1,−→0).

(4.2)

The second part of the tuple shows the gradients based on derivative rules. By modelling

the bottom-up evaluation of a query in the SDD in a differentiable way, gradients are

49

4. Neuro-Symbolic Reasoning

backpropagated to the parameters of the neural predicates, even though their outcome is

only indirectly supervised in the form of the final outcome of the query.

Experiments on several use cases show that DeepProblog converges faster than pure

neural networks and is more robust to noise [139]. However, the size of the proof set to be

considered for evaluating a query |𝑆𝑞 | increases exponentially with the number of input

facts. This poses a scalability problem, relevant for both inference and training, and limits

DeepProblog to small use cases [95, 178].

ExtendingDeepProbLog, Scallop [95] builds onDeepProbLog and sets out tomake inference

and learning more scalable. Essentially, it proposes a top-k semiring to infer the success

probability of a given query in a more efficient way. The idea of the top-k proof semiring is

to approximate the calculation of the success probability by including only the 𝑘 most likely

proofs, where 𝑘 ≥ 1 is a hyperparameter. Therefore, the operators ⊗𝑘 for conjunction and

⊕𝑘 for disjunction are redefined:

𝑆1 ⊗(𝑘) 𝑆2 = Top𝑘 (𝑆1 ⊗ 𝑆2) , 𝑆1 ⊕(𝑘) 𝑆2 = Top𝑘 (𝑆1 ⊕ 𝑆2) . (4.3)

Prior to the probability calculation, the proofs are ranked by their likelihood and only the

top 𝑘 ranked proofs are considered. The resulting set of proofs is determined as

𝑆𝑞 =

(𝑘)⊕
𝐹 derives 𝑞

©­«
(𝑘)⊗
𝑓 ∈𝐹

𝑆 𝑓
ª®¬ . (4.4)

This way, the calculation of the success probability of a query 𝑞 is approximated by

considering only the set of the 𝑘 most likely proofs 𝑆𝑞 instead of all proofs 𝑆𝑘 : 𝑃𝑟 (𝑞) =
𝑃𝑟 (𝑆𝑞) ≈ Pr(𝑆𝑞). This modification results in a constant complexity of

��𝑆𝑞 �� = O(𝑘).
Experiments show that Scallop scales significantly better than DeepProblog without

sacrificing accuracy [95].

4.2.1.1. Application to Graph Data

In [95], DeepProblog and Scallop are applied to the kinship reasoning task from a natural

language context on the ClutRR dataset [184]. Given a natural language fragment about

a set of characters and kinship relations between them, the task is to reason about an

implicit relation provided as query. The query relation itself is not contained in the text,

but can be inferred from the relations described in the text using a logic program. In the

task, only a label is given for the implicit relationship in the query. This, together with a

logic program about kinship relations, can be used to learn the parameters of a language

model for extracting the facts from the text. In the experiments in [95], the parameters of

a RobertA [134] model for text embedding learning and an MLP as relation extractor are

optimised.

Example 4.2.2 (Kinship Reasoning with Scallop). Consider an instance of the Clutrr

dataset, which consists of a query and a text extract in Figure 4.3. Here, the text describes

50

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

Context Query

Vincent is Dwight’s ??

0: Dorothy and her

brother Dwright went

to the basketball game

and had a great time.

1. Dorothy took her

son Vincent to the park

in the afternoon.

Dorothy Dwight

Vincent

Vincent

is

Dwight’s

nephew.

brother

son ?
ReasoningNeural Net

Figure 4.3.: Illustration of the kinship reasoning task with Scallop on the Clutrr dataset.

the three characters Dorothy, Dwright and Vincent. The query to be answered is how

Vincent and Dwright are related to each other. Only supervision for the query relation is

available during training. First, the RobertA model returns text embeddings. Then, for all

pairs of entities that occur in a sentence, the MLP outputs a score for each possible kinship

relationship in the domain, e.g. [0.4, (daughter, dwight, dorothy)]. This results in

2
2 · 21 probabilities with 21 relations and 2 characters per sentence. These probabilistic

facts are given to the logic program, which in this example contains compositional rules

of the family relations, e.g. (daughter - daughter - granddaughter). The probability of

the query relation can be inferred with the logic program. The loss between the query

result and the prediced probability can be computed and the gradients for the MLP and

RobertA parameters are backpropagated.

In the Clutrr example, the output of the neural network contains probabilities for all

possible pairs of characters described in the text and all possible relations in the domain.

For 𝑛 unique characters and𝑚 relations, 2
𝑛 ·𝑚 probabilities must be computed, which

has exponential complexity. However, in the Clutrr example, the text snippets contain

few different characters. Furthermore, even if the same character name is used in several

text samples with different queries, they are not considered to be the same entity and are

assumed to be independent. Consequently, the Clutrr example is not representative for

the application of Scallop to large graphs and avoids the scalability problem resulting from

the combinatorial explosion in the SDD evaluation.

4.2.2. Logic Tensor Networks

Logic Tensor Networks (LTN) [14, 57] is a neuro-symbolic framework that learns neural

network parameters by expressing knowledge as constraints in first-order logic and

optimising their joint satisfaction.

51

4. Neuro-Symbolic Reasoning

one-hot selection

Figure 4.4.: Illustration of the tensor computation graph of the MNIST addition example

in LTN. The figure is taken from [14].

LTN is based on Real Logic [14]. A theory in real logic is denoted as T = ⟨K,I(· | 𝜽)⟩. It
consists of first-order logic formulaeK in a logical language L with finite sets of variables

X, constants C, functions 𝐹 and predicates P. The knowledge applies to a domain D.

Further, I(· | 𝜽) is a parametric interpretation1 of all the symbols and operators in the

logical language in the real-valued domain.

Definition 4.2.1 (Interpretation). An interpretation I of a first-order logical language L
is a function from the signature ofL to the real numbers that satisfies the following conditions:

1. I(𝑐) ∈ R𝑛 for every constant symbol 𝑐 ∈ C;

2. I(𝑓) ∈ R𝑛·𝑚 −→ R𝑛 for every function 𝑓 ∈ 𝐹 with arity𝑚;

3. I(𝑃) ∈ R𝑛·𝑚 −→ [0, 1] for every predicate 𝑃 ∈ P with arity𝑚.

Thus, constants are mapped to vectors in R𝑛, 𝑚-ary functions are mapped to 𝑚-ary

real functions, and 𝑚-ary predicates are mapped to fuzzy subsets of [0, 1] ⊂ R. Com-

plex formulae are built from these components with a set of connectives and quantifiers

{∧,∨,¬,→,↔,∀, ∃}. They are interpreted with fuzzy logic operators, see Section 1.2.3.

Example 4.2.3 (Logic Tensor Networks). The MNIST addition example from Sec-

tion 4.2.1 is modelled in LTN as follows [14]. The tensor computations are illustrated in

Figure 4.4. The predicate digit(x,d) denotes the truth value for a digit in an image, and

the digit addition is formulated as

∀(𝑥,𝑦, 𝑛) : (∃𝑑1, 𝑑2 : 𝑑1 + 𝑑2 = 𝑛 , (digit (𝑥, 𝑑1) ∧ digit (𝑦,𝑑2))) ,

1
In [14] this mapping is called grounding but does not correspond to the term grounding in logic as

described in Section 1.2.2. Interpretation is used to distinguish the terms.

52

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

where 𝑥,𝑦 are variables for the first and the second image, 𝑑1 and 𝑑2 are the digits in the

images and 𝑛 is the sum of the digits. The language is interpreted in real logic:

· I(images) = [0, 1]28×28×1, MNIST images that have 28 × 28 pixels and a greyscale value.
· I(results) = N
· I(digits) = {0, 1, . . . , 9}
· I(𝑥) ∈ [0, 1]𝑚×28×28×1,I(𝑦) ∈ [0, 1]𝑚×28×28×1,I(𝑛) ∈ N𝑚

· I (𝑑1) = I (𝑑2) = ⟨0, 1, . . . , 9⟩
· I(digit | 𝜃) : 𝑥, 𝑑 ↦→ onehot(𝑑)⊤ · softmax (CNN𝜃 (𝑥))

CNN𝜃 is a convolutional neural network [122] with 10 output neurons. The operator

onehot(𝑑) converts the label 𝑑 into a one-hot encoded vector.

Given this interpretation I, all components of the theory can be represented in the real-

valued domain. A maximum satisfiability problem can be formulated with the grounded

rules and predicates. Hence, learning in LTN is defined as the process of finding the param-

eter values 𝜃 ∗ that maximize the satisfiability of the theory T w.r.t. a given aggregator

𝜽 ∗ = argmax

𝜽∈𝚯
SatAgg

𝜙∈K
I𝜽 (𝜙). (4.5)

Here, Θ is the parameter search space and 𝜙 ∈ K is a formula. In this example, the

parameters of the CNN classifying the digits in the images are learned by optimising the

satisfiability loss function. Although there is no direct supervision of the digit classification,

the satisfaction of the addition constraint is part of the constraint satisfaction optimisation

problem. In some cases, a regularisation term is applied to the parameter set to keep the

learned parameters small.

At inference, the learned parameters for the predicates are kept constant. Given any input

query, they can serve as functions that return truth values. Further, the confidence of

complex formulae is evaluated by grounding them to the constants in the domain and

using the semantics of real logic.

4.2.2.1. Application to Graph Data: Learning Embeddings with LTN

LTN was proposed as a framework for learning embeddings in graphs [14]. The entities of

a domain are initialised with random vectors, which are trainable parameters. The set of

formulae K over a domain is expressed in real logic and encoded as a loss function, see

Equation 4.5. By optimising the loss functions, the vector embeddings are refined, as well

as the parameters for the predicates. During inference, the learned embedding vectors

and functions can be queried. Also, formulae can be queried and truth values returned

for them during inference. In [14], embedding learning with LTN is illustrated using the

Smoker-Friends-Cancer Example [172].

53

4. Neuro-Symbolic Reasoning

0 200 400 600 800 1000
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Sa
t

p = 1 p = 6
train

0 200 400 600 800 1000
Epoch

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ut

h
Va

lu
e

1

2

Figure 4.5.: The satisfiability levels during the training of LTN on the left and the truth

values of the formulae 𝜙1 and 𝜙2 during training on the right. The figure is

taken from [14].

2 1 0 1 2

1

0

1

2

A

B
C

D

E

F

G

H

I

J

K

L
M

N

Embeddings

Group 1
Group 2

2 1 0 1 2

1

0

1

2
Smokes

0.2
0.4
0.6
0.8

2 1 0 1 2

1

0

1

2
Cancer

0.2
0.4
0.6
0.8

2 1 0 1 2

1

0

1

2
Friendships per group

Figure 4.6.: The results of the experiments on embedding learning with LTN. The truth

values for the predicates Smoker and Cancer are plotted on the right. The

learned embeddings for the entities in the groups E1 and E2 and their friendship
relations are plotted on the right. The figure is taken from [14].

Example 4.2.4 (Embedding learning with Logic Tensor Networks). The Smoker-

Friends-Cancer Example contains 14 entities that are separated into two groups E1 =

{𝑎, 𝑏, . . . , ℎ} and E2 = {𝑖, 𝑗, . . . , 𝑛}. The following entities are smokers: S = {𝑎, 𝑒, 𝑓 , 𝑔, 𝑗, 𝑛}.
All other entities are non-smokers. Friendship relations between people are also given:

F = {(a, b), (a, e), (a, f), (a, g), (b, c), (c, d), (e, f), (g, h), (i, j), (j, m), (k, l), (m, n)}. They are

non-reflexive and symmetric. For the entities in E1 it is known whether they suffer from

cancer or not: C = {𝑎, 𝑏}. For the entities in E2 it is unknown whether they have cancer

or not. Furthermore, general axioms can be formulated about the domain. The general

axioms are: (1) smoking habits are shared among friends, and (2) smoking causes cancer.

This results in a set of axioms.

• 𝐹 (𝑢, 𝑣) for(𝑢, 𝑣) ∈ F
• ¬𝐹 (𝑢, 𝑣) for (𝑢, 𝑣) ∉ F, 𝑢 > 𝑣

• 𝑆 (𝑢) for 𝑢 ∈ S

54

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

• ¬𝑆 (𝑢) for 𝑢 ∈ (E1 ∪ E2) \S
• 𝐶 (𝑢) for 𝑢 ∈ C
• ¬𝐶 (𝑢) for 𝑢 ∈ E1\C
• ∀𝑥¬𝐹 (𝑥, 𝑥)
• ∀𝑥,𝑦 (𝐹 (𝑥,𝑦) → 𝐹 (𝑦, 𝑥))
• ∀𝑥∃𝑦𝐹 (𝑥,𝑦)
• ∀𝑥,𝑦 ((𝐹 (𝑥,𝑦) ∧ 𝑆 (𝑥)) → 𝑆 (𝑦))
• ∀𝑥 (𝑆 (𝑥) → 𝐶 (𝑥))
• ∀𝑥 (¬𝐶 (𝑥) → ¬𝑆 (𝑥))

Note that from a logical point of view, the formulae are not simultaneously satisfiable.

There are people who smoke and do not get cancer, or non-smokers in a group of friends

who smoke. Therefore, the formulation in fuzzy logic is crucial to express the degree of

truth.

In the real-valued space, the formulae are interpreted as follows. The embeddings are

intialized with random vectors {v𝜃 (𝑎), . . . , v𝜃 (𝑛)} of dimension R5. Multilayer perceptrons

(MLP) represent the predicates 𝑆, 𝐹,𝐶 in real logic.

• I (people) = R5. The model is expected to learn embeddings in R5.
• I(𝑎 | 𝜃) = v𝜃 (𝑎), . . . ,I(𝑛 | 𝜃) = v𝜃 (𝑛). Every individual is associated with a randomly
initialized vector of 5 real numbers.

• I(𝑥 | 𝜃) = I(𝑦 | 𝜃) = {v𝜃 (𝑎), . . . , v𝜃 (𝑛)}
• I(𝑆 | 𝜃) : 𝑥 ↦→ sigmoid(MLP𝑆,𝜃 (𝑥)), where MLP𝑆,𝜃 has 1 output neuron.

• I(𝐹 | 𝜃) : 𝑥,𝑦 ↦→ sigmoid
(
MLP𝐹,𝜃 (𝑥,𝑦)

)
, where MLPF,𝜃 has 1 output neuron.

• I(𝐶 | 𝜃) : 𝑥 ↦→ sigmoid(MLP𝐶,𝜃 (𝑥) , where MLP𝐶,𝜃 has 1 output neuron.

Together they form a 𝑆𝑎𝑡𝐴𝑔𝑔 loss function, see Equation 4.5.

The learned embeddings are plotted in Figure 4.6[14]. It can be seen that the formula

smoking implies cancer is inferred for entities in E2 and changed for entities 𝑓 and 𝑔, as

they are inconsistent with the rule set. After learning, the models MLP𝑆 , MLP𝐶 and MLP𝐹 can

be queried. For example, MLP𝐶 is queried to predict the predicate Cancer for the entities in

E2. The truth values of formulae can also be queried. Figure 4.5 shows that satisfiability of

the axioms and of the following formulae increases and converges during training

𝜙1 : ∀𝑝 : 𝑆 (𝑝) → 𝐶 (𝑝)
𝜙2 : ∀𝑝, 𝑞 : (𝑆 (𝑝) ∨ 𝑆 (𝑞)) → 𝐹 (𝑝, 𝑞) (4.6)

4.2.3. Knowledge Enhanced Neural Networks

Knowledge Enhanced Neural Networks (KENN) [48] integrate prior knowledge in the form

of logical formulae into a neural network by adding knowledge enhancement layers to the

network architecture. The purpose of these layers is to refine predictions in order to align

them with the prior knowledge.

55

4. Neuro-Symbolic Reasoning

Figure 4.7.: The architecture of knowledge enhanced neural networks. A base neural net-

work (NN) makes intial predictions that are updated by one or more knowledge

enhancement layers (KE). The figure is taken from [48].

The architecture of KENN is illustrated in Figure 4.7. It essentially consists of two modules

that are end-to-end differentiable. First, a base neural network implements a function that

produces predictions Y ∈ R𝑛×𝑐 for 𝑐 classes given some input data X ∈ R𝑛×𝑑 with feature

dimension 𝑑 . Second, one or more knowledge enhancement layers are stacked on top of the

base neural network that are associated with a finite set of prior knowledge formulae K .
These knowledge enhancement layers aim to refine the predictions with respect to the

knowledge in K .

KENN expects formulae 𝜙 ∈ K to be clauses which are disjunctions of 𝑘 literals. They are

based on a first-order logical language consisting of constants C and predicates P. As the
clauses in K formulate general knowledge they contain no constants and be universally

quantified. Each knowledge enhancement layer implements a function that updates the

predictions of the base neural networks’s last layer. It therefore uses a t-conorm boost
function 𝛿𝜙 : R𝑘 → R𝑘+ that increase the satisfaction of a formula 𝜙 measured in fuzzy

logic, see Section 1.2.3. The softmax function is used as differentiable approximator of the

maximum function, which represents disjunction in Gödel logic, see Section 1.2.3. The

suggested refinements Δ𝜙
𝑖 𝑗
to increase the satisfaction of a clause 𝜙 are calculated as

Δ
𝜙

𝑖 𝑗
= 𝛿𝜙 (Z)𝑖 𝑗 = 𝑤𝜙 · softmax(Z)𝑖 = 𝑤𝜙 ·

𝑒Z𝑖 𝑗∑𝑞

𝑙=1
𝑒Z𝑖𝑙

. (4.7)

The refinements Δ𝜙 ∈ R𝑛×𝑞 are computed on the matrix of preactivations Z before applying

the activation function 𝜎 . This is done to ensure that the final predictions lie in [0, 1]. The
t-conorm boost function 𝛿𝜙 in Equation 4.7 is applied to each cell Z𝑖 𝑗 and operates on the

values 𝑗 ∈ {1, . . . , 𝑞} contained in a row. A row has 𝑞 prediction classes that correspond to

the number of unary predicates in the logical language. The parameter𝑤𝜙 denotes a clause
weight that is associated with each clause in 𝜙 ∈ K . The clause weights are optimized

during training and can be interpreted as the importance of a clause for improving the

final predictions. The refinements Δ𝜙 from each clause 𝜙 ∈ K are aggregated and added to

the preactivations of the base neural network to produce the final predictions Y′ ∈ R𝑛×𝑞 :

Y′ = 𝜎 ©­«Z +
∑︁
𝜙∈K

Δ𝜙
ª®¬ . (4.8)

56

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

In the learning process, the loss function is based on the given labels and the updated

predictions Y′ instead of the predictions of the base neural network Y. This way, the clause
weights are part of the optimization.

Example 4.2.5 (Knowledge Enhanced Neural Networks). Recall the Smoker-Friends-

Cancer Example in Section 4.2.4. Here, it is adapted to formulate a multi-label classification

task where the classes are not mutually exclusive but have dependencies. Constants

denote people annotated with a feature vector x ∈ R𝑑 . They are categorised whether

they are smokers 𝑆 (𝑥) and whether they have cancer 𝐶 (𝑥). The following clause 𝜙0 :

∀(x) : ¬S(x) ∨ C(x) describes a dependency between the predicates 𝑆 and 𝐶 . The base

neural network returns truth values Y with their preactivations Z, e.g. Z[𝑎,𝐶] = 0.5,

Z[𝑎,𝑆] = 0.3 for a constant 𝑎. These are fed into the t-conorm boost function for clause 𝜙0 to

determine Δ𝜙0 with𝑤𝜙0 = 0.5. The grounded literal ¬𝑆 (𝑎) is negated, so its preactivation

is multiplied by −1. This leads to the following refinements:

Δ
𝜙0
𝑎 = 0.5 ·

[
1 −1

]
⊙ softmax

([
0.5

0.3

])𝑇
= 0.5 ·

[
𝑒0.5

𝑒0.5+𝑒0.3 −
𝑒0.3

𝑒0.5+𝑒0.3

]
(4.9)

Then, the updated preactivations with the refinements are calculated as

Z′[𝑎,𝐶] ≈ 0.75

Z′[𝑎,𝑆] ≈ 0.06.

It can be seen that the knowledge enhancement layer acts on the preactivations by increas-

ing the vallue for the atom 𝐶 (𝑎) and decreasing the value for 𝑆 (𝑎).

4.2.3.1. Application to Graph Data

In the architecture of KENN presented above, the knowledge enhancement layer operates

on a matrix of preactivations that serves as grounding for unary predicates. Binary

predicates must be taken into account in order to handle graph data. The principles of

the knowledge enhancement through a t-conorm boost function remain unchanged. In

[46] changes to the data structure are proposed to take binary predicates into account.

The set of clauses is divided into unary and binary clauses: K = K𝑈 ∪ K𝐵 . Unary and

binary predicates are denoted as 𝑃𝑈 ∈ P𝑈 and 𝑃𝐵 ∈ P𝐵 Binary clauses contain two different

variable, for example 𝜙1(𝑥,𝑦) : ∀𝑥𝑦 : ¬𝑆 (𝑥) ∨ ¬𝐹 (𝑥,𝑦) ∨ 𝑆 (𝑦) with the binary predicate

Friends 𝐹 (𝑥,𝑦).

For unary predicates, the rows in the preactivation matrix Z correspond to the constants

and the columns to the unary predicates. Thus, each possible grounded atom corresponds

to a cell in the matrix. The key challenge with binary predicates is that the grounding of a

binary predicate refers to two constants instead of one. Therefore, binary groundings are

expressed as a matrix Z𝐵 ∈ R𝑚×|P𝐵 | . Each row has a pair of keys (𝑠𝑥 , 𝑠𝑧) and each cell in

the matrix corresponds to the grounding of a binary predicate. It has binary keys (𝑠𝑥 , 𝑠𝑧)
per row and a value as grounding for a binary predicate 𝑃𝐵 (𝑥,𝑦).

57

4. Neuro-Symbolic Reasoning

To bring unary and binary predicates into a representation to which the t-conorm boost

function can be applied, unary predicates are binarised. A unary predicate 𝑃𝑈 is formalized

as two binary predicates 𝑃𝑥
𝐵
(𝑥,𝑦) and 𝑃𝑦

𝐵
(𝑥,𝑦), where only the first (second) entry matters.

For example, 𝜙1(𝑥,𝑦) is binarised to ∀𝑥𝑦 : ¬𝑆𝑥 (𝑥,𝑦) ∨ ¬𝐹 (𝑥,𝑦) ∨ 𝑆𝑦 (𝑥,𝑦). Then, unary
and binary predicates are combined into a matrix on which the clause enhancers for binary

clauses can operate. Therefore, the keys of the unary matrix are joined on the keys of the

matrix with the binary predicates (𝑠𝑥 , 𝑠𝑦). It can happen that two groundings of a binary

clause share a common grounded term. For example, 𝜙1(𝑎, 𝑏) = ¬𝑆 (𝑎) ∨ ¬𝐹 (𝑎, 𝑏) ∨ 𝑆 (𝑏)
and 𝜙1(𝑏, 𝑐) = ¬𝑆 (𝑏) ∨ ¬𝐹 (𝑏, 𝑐) ∨ 𝑆 (𝑐) share the grounded atom 𝑆 (𝑏). In this case, the

refinements provided by both groundings are aggregated and added up for identical keys,

corresponding to the following group-by operation for a repeated grounded unary predicate
𝑃𝑈 (𝑎):

Δ𝑃 (𝑎) =
∑︁
𝑏≠𝑎

©­­­«
∑︁
𝜙∈K𝐵

𝑃𝑥∈𝜙

𝑤𝜙 · Δ𝜙[𝑎,𝑏],𝑃𝑥 (𝑎,·) +
∑︁
𝜙∈K𝐵

𝑃𝑦∈𝜙

𝑤𝜙 · Δ𝜙[𝑏,𝑎],𝑃𝑦 (·,𝑎)
ª®®®¬ . (4.10)

The notation Δ
𝜙

[𝑎,𝑏],𝑃𝑥 (𝑎,·) indicates that the row for the constant pair [𝑎, 𝑏] and the column

for the binarized unary predicate 𝑃𝑥 (𝑎, ·) fromΔ𝜙 are selected. Refinements from predicates

that do not appear in clause are set to zero. Finally, to obtain the updated predictions

Y′, the refinements from unary clauses ΔK𝑈 ,𝑃 (𝑎) , and from binary clauses ΔK𝐵,𝑃 (𝑎) for a
grounded predicate 𝑃 (𝑎) are added to the preactivations Z𝑃 (𝑎) and are activated with 𝜎 :

Y′𝑃 (𝑎) = 𝜎
©­«𝑍𝑃 (𝑎) +

∑︁
𝜙∈K𝑈

Δ
𝜙

𝑃 (𝑎) +
∑︁
𝜙∈K𝐵

Δ
𝜙

𝑃 (𝑎)
ª®¬ . (4.11)

Example 4.2.6 (Knowledge Enhanced Neural Networks with Binary Predicates).
With these changes, the binary predicate Friends is introduced to the Smoker-Friends-

Cancer Example above [46]. The example is illustrated in Figure 4.8. The domain consists of

three constants (people) C = {𝑎, 𝑏, 𝑐} and the unary predicates P𝑈 = {𝑆,𝐶} and the binary
predicate P𝐵 = {𝐹 }. The constants are described as a graph, as shown below, where the

edge weights represent the groundings for the binary predicates and the initial predictions

represent the groundings for the unary predicates. In Figure 4.9, the unary groundings

Z𝑈 and binary groundings Z𝐵 are denoted as matrices. The join operation represents

the binarization of the predicates 𝑆 (𝑥) and 𝐶 (𝑥) to 𝑆𝑥 (𝑥,𝑦), 𝑆𝑦 (𝑥,𝑦) and 𝐶𝑥 (𝑥,𝑦),𝐶𝑦 (𝑥,𝑦)
so that they are represented in a matrix with the binary groundings. The knowledge

enhancer for binary clauses is applied to the joined matrix shown in Figure 4.9. The

group-by operation collects the refinements that refer to common grounded atoms. In case

the set of unary clauses is not empty, refinements computed from unary clauses would be

added, as described in Equation 4.11.

58

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

𝑆 (𝑎) = 0

𝐶 (𝑎) = −3

𝑆 (𝑏) = −3
𝐶 (𝑏) = 1

𝑆 (𝑐) = 2

𝐶 (𝑐) = −1

b

c

a

𝐹 (𝑎, 𝑏) = 2

𝐹 (𝑏, 𝑎) = −4

𝐹 (𝑎, 𝑐) = 1

𝐹 (𝑏, 𝑐) = −1

©­«
0 −3
3 1

2 −1
ª®¬

0

2

1

i S(x) C(x)

Graph

Unary and Binary

Groundings

©­­­­­­­«

−2
1

3

−1
0

5

ª®®®®®®®¬

(𝑠𝑥 , 𝑠𝑦)

(0,1)

(0,2)

(1,0)

(1,2)

(2,0)

(2,1)

𝐹 (𝑥,𝑦)

Figure 4.8.: Illustration of KENN on the Smoker-Friends-Cancer example. Left: The graph
of three people 𝑎, 𝑏, 𝑐 with preactivation values for Smoker (𝑆) and Cancer (𝐶)

as well as Friendship (𝐹). Right: The interpretation of the graph as grounded

unary and binary predicates.

Z𝑥 Z𝑦 B

©­«
0 −3
3 1

2 −1
ª®¬

0

2

1

i S(x) C(x) ©­­­­­­­«

−2
1

3

−1
0

5

ª®®®®®®®¬

(𝑠𝑥 , 𝑠𝑦)

(0,1)

(0,2)

(1,0)

(1,2)

(2,0)

(2,1)

F(x,y)

JOIN

SELECT 𝑠𝑥 , 𝑠𝑦,Z𝑥 ,Z𝑦,B
FROM Z AS Z𝑥 , Z AS Z𝑦 , B

WHERE Z𝑥 .𝑖 = B.𝑠𝑥 AND Z𝑦 .𝑖 = B.𝑠𝑦

©­­­­­­­«

0 −3 3 1 −2
0 −3 2 −1 1

3 1 0 −3 3

3 1 2 −1 −1
2 −1 0 −2 0

2 −1 3 1 5

ª®®®®®®®¬

(0,1)

(0,2)

(1,0)

(1,2)

(2,0)

(2,1)

𝑆𝑥 𝐶𝑥 𝑆𝑥 𝑆𝑦 𝐹

Figure 4.9.: Illustration of the binarization of the unary predicates 𝑆 and 𝐶 to 𝑆𝑥 , 𝑆𝑦 and

𝐶𝑥 ,𝐶𝑦 and their join with 𝐹 on the keys (𝑠𝑥 , 𝑠𝑦).

59

4. Neuro-Symbolic Reasoning

4.2.4. Conclusion

The previous section introduced three approaches in the field of neuro-symbolic integra-

tion.

Regarding graphs, all of them offer the possibility to encode binary predicates and thus

to model relations in their logical language. It is shown that LTN is theoretically suit-

able for learning embeddings for entities in graphs. Scallop was tested in applications

involving reasoning with binary predicates. Scallop was used in the context of a reasoning

task on kinship relations. KENN was used to refine predictions for unary predicates by

incorporating information from binary clauses.

However, open questions remain when applying these methods to graphs. The first open

question is how to consider the open-world assumption on graphs when some information

is not explicit and negation has to be taken into account. Related to this, the second major

concern is scalability on large graphs with a high number of entities and relations.

For LTN, the grounding process can be expensive for a large number of entities and facts.

Also, a large number of axioms leads to a complex loss function. LTN also requires to

ground negated statements, that are usually not explicitly encoded in knowledge graphs.

For Neural Probabilistic Programming, the inference process relies on the closed world

assumption. The resolution of the logic program at inference can also become challenging

when many grounded terms have to be considered, including negated terms. Furthermore,

to obtain the probabilistic facts from the neural predicates, an exponentially growing

number of entity pairs must be evaluated, which is infeasible for large graphs. In KENN, the

matrix with groundings grows quadratically (𝑛2) with the number of possible combinations

of 𝑛 nodes in the graph. Since the representation is dense, a truth value is needed for each

pair of nodes that are not connected.

In conclusion, the use cases presented are based on small, limited problems, resulting in

dense graphs that are fully connected or even toy examples with a small number of entities

and relations. They do not resemble real-world graphs such as knowledge graphs. For this

reason, the application of the presented neuro-symbolic methods to them still needs to be

addressed.

4.3. Neuro-Symbolic Reasoning on Graphs

Since the methods of the previous section have some major drawbacks when applied to

large graphs, this section presents neuro-symbolic methods that are developed specifically

for knowledge graphs. These methods are organised into the following categories: (1)

rule learning, (2) knowledge-driven graph augmentation, (3) knowledge as constraints on
the embedding space, and (4) knowledge as regularization terms in the loss function. For a
broader overview, the following surveys are recommended [52, 222].

60

4.3. Neuro-Symbolic Reasoning on Graphs

4.3.1. Rule Learning

For the sake of completeness, the first category concerns rule learning approaches. Methods

in this category leverage neuro-symbolic techniques to extract rules from data. The

majority of these methods train a neural component to obtain rule confidence scores or

guide the rule mining strategy. Some exemplary methods in this category are ExpressGNN
[94], pLogicNet [167], pGat [85], ItEr [89], RNNLogic [168], Drum [176] or Neuro-Symbolic
Class Expression Learning [53]. As the focus of this thesis lies on the integration of prior

knowledge and not on the extraction of knowledge in form of rules, methods of this

category are not presented in detail.

4.3.2. Knowledge-driven Graph Augmentation

Models in the category knowledge-driven graph augmentation use reasoning iteratively

in the training process. The purpose of the symbolic module is to augment the graph
with additional facts on which the sub-symbolic module is trained. The symbolic and

sub-symbolic components are applied sequentially or can interact with each other. Typi-

cally, the sub-symbolic methods used here are knowledge graph embedding methods, as

mentioned in Section 3.1, combined with a symbolic reasoning module.

In KGE*[106] a reasoner and a knowledge graph embedding model inform each other by

iteratively feeding the output of one component as input to the other. The reasoner is based

on a set of Horn rules that encode user-specific or ontological domain knowledge. Starting

from the rules and the explicit facts, the reasoner applies forward chaining until a fixpoint

is reached, in order to augment the explicit facts with inferred facts. The score function of

a knowledge graph embedding method is used to evaluate the plausibility of the explicit

and inferred facts. The most plausible facts are fed back to the reasoner and the process

is repeated iteratively. To reduce the number of facts to be evaluated by the knowledge

graph embedding, KGE* only scores the most relevant facts. To determine the relevance

of facts, densely connected areas in the graph are taken into account using clustering

techniques. In the experiments with KGE* [106] the knowledge graph embeddings TransE

[26], HolE [156], ComplEx [194], RotatE [188] and DistMult [214] and the reasoner Pellet

[186] are used. However, KGE* is described as a model agnostic framework that does not

depend on a specific knowledge graph embedding method or reasoner. In terms of prior

knowledge, KGE* is restricted to monotonic rules to ensure that the inferred facts never

contradict the existing facts. It focuses only on the generation of positive facts. It also

expects a set of predefined hard rules.

Similar to KGE*, UniKer integrates a knowledge graph embedding method with a reasoner

in an iterative manner to infer implicit facts. The number of inferred facts depends on

the number of explicit facts. Motivated by this, knowledge graph embeddings are used

to find more plausible facts to be given to the reasoner and to increase the coverage of

the rules. While KGE* only increases the number of facts, UniKer extends the method by

also removing the least 𝜆% plausible facts with the lowest scores. This allows UniKer to be

robust to noise in the form of incorrectly introduced facts and to avoid the propagation

61

4. Neuro-Symbolic Reasoning

of contradictions by the reasoner. Since the number of facts to be potentially evaluated

is large, UniKer uses lazy inference. Only the facts are scored that occur in the body of

rules and are potentially useful to the reasoner. In addition to KGE*, UniKER focuses on

monotonic Horn rules. UniKer does not rely on the availability of prior knowledge, as it

uses automatically generated rules from AMIE+ [66]. UniKer is agnostic to the knowledge

graph embedding method. However, in the experiments [36] TransE, DistMult and RotatE

are used.

While the above methods focus on the set of positive facts, ReasonKGE [102] uses prior

knowledge to generate a set of negative facts in a more reliable way. It iteratively identifies

inconsistent predictions by a knowledge graph embedding model through consistency
checking. As noted in Section 3.1.3, negative facts are usually sampled randomly under

the local closed-world assumption. This does not prevent the introduction of potentially

false negative facts. ReasonKGE iteratively generates a set of negative facts based on the

ontology, the explicit facts and a knowledge graph embedding model. The method starts

with standard training of a knowledge graph embedding model based on random negative

sampling [26]. Then a consistency check based on DLITE [11], a lightweight extension

of description logics is performed to identify inconsistent predictions. Once inconsistent

predictions are found, facts that have a similar neighbourhood to the inconsistent fact are

sampled, resulting in a set of negative facts. This procedure is called dynamic sampling.
The set of negative facts is then fed back into the next training iteration of the knowledge

graph embedding model.

4.3.3. Knowledge as Constraints on the Embedding Space

Another way of introducing knowledge is in the form of constraints on the embedding

space. In fact, the inference patterns covered by knowledge graph embeddings can already

be seen as such constraints. For example, in DistMult all relations are modelled as symmet-

ric relations, which already represents the encoding of prior knowledge in the embedding

space. However, it is not obvious how to introduce general and complex knowledge into

the embedding space. In addition, this strong bias towards a particular inference pattern

may sometimes not be desirable.

The translational embedding method BoxE, see Section 3.1, goes further in this direction

and allows the explicit injection of inference patterns as prior knowledge. This method

is in the following referred to as BoxE with rule injection (BoxE + RI). A rule 𝜂 ← 𝐵 is

injected if the model is configured to force 𝜂 to hold whenever the expression in the body

𝐵 holds [3]. To achieve this, a strong bias is introduced into the embedding model by

manually adjusting the boxes of some relations according to the injected rules. This bias

ensures that the rule is enforced even during inference. To inject symmetry and inversion

rules for relations 𝑟1 and 𝑟2, their boxes are constrained to r(1) !

= r(2) for symmetry, or

r(1)1
!

= r(2)2 and r(1)2
!

= r(2)1 for inversion. It is shown in [3] that hierarchy and intersection

rules can also be enforced. However, the injection of negated and composed rules is not

supported.

62

4.3. Neuro-Symbolic Reasoning on Graphs

4.3.4. Knowledge as Regularization Terms in the Loss Function

Methods in this category introduce knowledge through the loss function. The strategy is to

penalize solutions that are inconsistent with the knowledge and thus provides incentives

to find knowledge compliant representations during optimization.

Figure 4.10.: Visualisation of KALE. The facts are interpreted as grounded atoms and

normalized scores as their truth value. Logical operators are represented in

fuzzy logic. The figure is taken from [77].

TransOWL [42] builds on TransE and encodes knowledge as terms in the loss function.

The knowledge comes from an RDFS schema and typically includes class information,

relational equivalence, inversion and hierarchy. The penalty terms take into account

how TransE models facts in the embedding space, where the representation of the tail

entity corresponds to the representation of the head entity plus the relation vector. In

line with this, the term 𝜆
∑
𝑟1=𝑟2∈Tequiv ∥|r1 − r2∥ is added to the score function of TransE,

where the relations 𝑟1 and 𝑟2 that are known to be equal (𝑟1 = 𝑟2), For inverse relations,

−𝜆∑
𝑟1=𝑟

−
2
∈Tinv ∥r1 + r2∥ is added to the score function. The parameter 𝜆 controls the impact

of the penalty term. This way, relations are penalized that do not correspond to the rule in

the embedding space and increase the overall loss. The goal is to push the representations

towards vectors that satisfy the rules in the vector space. TransOWL also criticises uniform

negative sampling, see section 3.1.3, and highlights the risk of generating false negatives.

To mitigate this issue, TransOWL uses a reasoner [103] to introduce negative facts based

on the knowledge provided. With this feature, TransOWL carries elements of the methods

in the category knowledge-driven graph augmentation in Section 4.3.2.

Joint Embedding of Instances and Ontological Concepts (JOIE) [82] considers knowledge
graphs from both an instance view and an ontological view. While the instance view

considers the facts in a knowledge graph, the ontological view considers general knowledge

for the relations and entities in the fact set. Facts and general knowledge are embedded in

separate vector spaces called intra-view models. The knowledge graph embedding models

TransE, HolE [156] and DistMult are used as intra-view models in JOIE. In addition, a

cross-view model 𝑓𝐶𝑇 (·) bridges the embeddings of both spaces, thereby linking instance

embeddings with concept embeddings. In the cross-view model, the representation of

an entity is trained to be close to the representation of the concept type, see Figure 4.11.

63

4. Neuro-Symbolic Reasoning

Special attention is drawn to modeling hierarchies for the property subclass_of in the

ontological view embeddings. Therefore, an additional loss term is introduced that models

pairs of hierarchical concepts with a non-linear transformation between class and subclass

concepts. The loss function of JOIE is composed of the losses of the intra-view models

Beijing

NYC

Honolulu

O

Barack Obama

Pablo Alboran

Donald Trump
Michelle Obama

O

Entity Embedding Space Concept Embedding Space

City

NYC

Beijing

Honolulu

Pablo Alboran

Barack Obama

Michelle Obama
Donald Trump

Los Angeles

Los Angeles

Person

“City”

Entites

“Person”

Entities

“City”

Concept

“Person”

Concept

fCT(·)

fCT(·)

Figure 4.11.: Visualisation of JOIE. The embeddings in the intra-view space, namely entity

embedding space and concept embedding space, are translated with a cross-

view transformation function 𝑓𝐶𝑇 . The figure is taken from [82].

(including the hierarchy term) and the loss of the cross-view model.

KALE (Embeddings by jointly modeling Knowledge And Logic) [77] introduces prior knowl-
edge to knowledge graph embeddings by jointly embedding the grounded formulae and
facts of a knowledge graph in the same latent space. KALE is visualised in Figure 4.10. In

contrast to the previous mentioned approaches TransOWL and JOIE that focus on simple

RDFS schema rules, KALE supports first-order logic rules. The facts in the knowledge

graph are interpreted as grounded atomic formulae in first-order logic. KALE employs

TransE [26] to compute scores for these grounded atomic formulae. The entities are

constrained so that the truth values returned by TransE fall into [0, 1] ⊂ R to mimic truth

values. To represent complex formulae in the same space, KALE encodes logical operators

in fuzzy logic. In this way, truth values of grounded complex formulae can be composed

of atomic formulae. The larger a truth value, the better a grounded rule is satisfied. In the

following, a global loss over the satisfaction of the grounded formulae in fuzzy logics and

the atomic formulae as facts in the graph can be defined. KALE relies on a margin-based

ranking loss. Uniform random sampling is not only conducted to obtain negative facts,

but also to obtain negative grounded rules [26].

RUle-Guided Embedding (RUGE) [78] learns knowledge graph embeddings iteratively

through the guidance from soft rules. It takes as input the sets of explicit facts, implicit

facts, and soft rules with confidence scores. The soft rules and their confidence scores are

learned with AMIE [65]. Per iteration, RUGE alternates between a soft label prediction
stage and a embedding rectification stage. The goal of the soft label prediction stage is to

find scores for the implicit facts. ComplEx is used as the knowledge graph embedding

64

4.4. Summary and Perspective

Name r s k i knowledge

General

Frameworks

DeepProblog [139] ✓ ✗ ✓ ✓ FOL formulae

Scallop [95] ✓ (✗) ✓ ✓ FOL formulae

LTN [14] ✓ (✓) ✓ (✓) FOL formulae

KENN [48] ✓ (✓) ✓ (✓) FOL clauses

Knowledge-driven

graph

augmentation

KGE* [106] ✗ (✗) ✓ (✗) Horn rules

UniKer [36] ✓ (✗) ✓ (✗) Horn rules

ReasonKGE [102] ✓ (✗) ✓ (✗) Horn rules

Knowledge as

constraints on

the embedding space

BoxE+RI [3] ✓ ✓ ✓ (✓)

Hierarchy

Inversion

Symmetry

Intersection

Knowledge as

Regularization

on the Loss

function

TransOWL [42] ✓ ✓ ✓ ✗

Symmetry

Equivalence

Inversion

JOIE [82] ✓ ✓ ✓ ✗
Hierarchy

Types

KALE [77] ✓ (✓) ✓ ✗ FOL formulae

RUGE [78] ✓ (✓) ✓ ✗ Horn rules

Table 4.2.: Overview of the neuro-symbolic methods presented in this thesis with respect

to the desiderata of neuro-symbolic AI: robust, scalable, accurate, knowledge-
aware, interpretable.

model. They should match the scores produced by ComplEx and at the same time match

the rules as much as possible. Given rules with confidence and embeddings from the

previous iteration, the goal is to predict a soft label for the implicit fact using the current

embeddings and groundings of the rules. The grounded rules are used as constraints on

the soft labels. The conditional truth values of the grounded rules given the soft labels are

recursively computed using product fuzzy logic. The confidence scores are used to set the

tolerance for a rule violation. For the purpose of scalability, RUGE only grounds facts that

occur in the body of a rule, as described for UniKer. In the embedding rectification stage,

the labelled and unlabelled facts (with their known labels and soft labels from the previous

step) are used to update the embeddings. A global loss over explicit and implicit facts is

minimized. The goal is to align the final embeddings on the one hand with the known

labels but also with the knowledge coming from the rules injected into the soft labels.

4.4. Summary and Perspective

With regard to the presentedmethods, an important question is whether the combination of

symbolic and sub-symbolic methods is successful in bringing the best components of both

fields. It is now discussed qualitatively whether the proposed methods meet the desiderata

robust, scalable, interpretable, knowledge-based and accurate defined in Section 4.1. A

summary is presented in Table 4.2. A fair assessment of the accurate criterion would

require a quantitative analysis, which is beyond the scope of this section. Therefore, this

criterion will not be discussed.

65

4. Neuro-Symbolic Reasoning

Knowledge-aware. All of the methods presented enable the incorporation of prior

knowledge. However, the expressiveness of the knowledge to be encoded as rules in the

model differs significantly. The general frameworks DeepProblog, Scallop and LTN accept

expressive first-order logical rules including quantifiers and aggregators, while KENN

is limited to universally quantified clauses in first-order logic. DeepProblog is based on

Prolog which only uses Horn clauses.

The knowledge used in knowledge-driven graph augmentation approaches is monotonic

Horn rules, which allow additional facts to be inferred and augment the initial graph.

Methods that fall into the category of knowledge as constraints on the embedding space

or in the loss function are mostly limited to simple inference patterns typically found

in RDFS schemas. They refer to patterns that should hold for certain relations, such as

symmetry, hierarchy, inversion and relational equivalence. However, KALE uses fuzzy

logic to contribute to the satisfaction of first-order logic rules in the loss function. RUGE

uses possibly soft Horn rules with confidence values at the soft label prediction stage.

Robust. In terms of robustness, the methods differ in the way they can handle errors

and noise in the input data. The general frameworks KENN and LTN are rather robust to

noise in the input data, since the logic formulae are fully translated to differentiable neural

network components in the training phase. In particular, KENN uses trainable clause

weights for each rule, which can learn to ignore apparently incorrect rules. In neural

probabilistic programming approaches, the neural predicates are also noise-tolerant to the

input data.

Knowledge-driven graph augmentation approaches rely on a symbolic reasoner, which

is not noise tolerant by default and carries the risk of propagating errors in the program

leading to false inferences. Furthermore, non-monotonic Horn rules do not allow for

contradictions with the previously obtained set of facts, which does not allow for error

correction. KGE* relies on a simple reasoner and is therefore not robust to noise, since the

reasoner could amplify the noise by propagating wrong facts. In contrast, UniKer not only

infers new facts, but also removes the least plausible facts. In this way, inconsistent facts

can be removed. In ReasonKGE, facts must pass a consistency check. Facts that are likely

to be false are included as negative facts. This makes ReasonKGE robust to noise.

The methods from the categories knowledge as constraints on the embedding space

embedding and knowledge as regularization term in the loss function essentially represent

knowledge in the embedding space and are therefore robust to noise.

However, robustness to noise means that the performance of a model remains stable or is

only slightly affected in the presence of noisy input data. The amount and type of noise

that a model can tolerate needs to be investigated experimentally. Even sub-symbolic

models that rely on a training stage can be affected by dominant noise in the data.

66

4.4. Summary and Perspective

Interpretable. Another desirable feature of neuro-symbolic methods is interpretability.

Among the methods presented, neural probabilistic programming approaches are the only

category that use reasoning with a logic program at inference. Therefore, the reasoning

process remains interpretable and the symbolic knowledge is not lost in the translation to

the embedding space. However, KENN and LTN integrate rules into the model and the loss

function during training. Particularly in LTN, it is difficult judge the effect and interaction

of the logic components after inference. The same disadvantage is present in KALE and

RUGE. In KENN, the clause weights can still give some insight into the importance of

rules, but there is no guarantee that they will hold in the predictions at inference.

For the knowledge-driven graph augmentation approaches, the rules affect the training

phase and are not included at inference. Furthermore, the impact of a rule is hard to

be quantified. For example, if the body of a rule is never true, zero additional facts

will be generated by that rule. In this case, the rule has no effect. For this reason, the

interpretability of methods in this category is limited. In BoxE+RI, the boxes for some

relations that follow rules are set manually. This introduces a strong bias that provides

predictable inference and interpretable decisions with respect to the affected relations.

However, the decisions about other relations may not be interpretable, and the rule

language of the injected rules is limited to simple inference patterns.

TransOWL basically introduces knowledge as constraints in the loss term during training.

The parameter 𝜆 controls the influence of knowledge. However, this does not lead to reliable

predictive inference or more interpretable representations than in TransE. Similarly, the

pure vector representations learned in TransOWL and JOIE are not easier to interpret than

pure sub-symbolic knowledge graph embedding vectors, especially when the embedding

dimension is high.

Scalable. DeepProblog has to solve a reasoning problem in both training and inference,

which is computationally expensive when many possible worlds have to be considered.

Scallop tackles this problem by proposing approximated proof evaluation with the top-k

algorithm. However, the costly reasoning process in training and evaluation remains.

UniKer, ReasonKGE and KGE* use a reasoner during training. While these components

are costly at training, the methods rely on the trained embeddings and scale well at

inference.

TransOWL and BoxE+RI, which used embedding and loss function constraints, scale well

during training and inference. RUGE, KALE and LTN need to ground universally quantified

rules during training, which can be expensive, but this step is not necessary at inference.

The time complexity of KENN depends on the rules and predicates considered. Since the

clauses are assumed to be independent, their enhancement calculation can be parallelized,

leading to a logarithmic time complexity depending on the number of entities and clauses

[46].

67

Part III.

Contribution

69

Outline of Contribution

Section 5

Reproducibility

of KENN [46]

Section 6

KeGNN:

Knowledge

Enhancement of

Graph Neural

Networks

Section 7

KeGNN on

Large Graphs

Section 8

RuleKGE:

Rule-injected

link prediction

on knowledge

graphs

Figure 4.12.: Outline of the Contribution

The main contributions of this thesis are illustrated in Figure 4.12. Since the work of

Knowledge Enhanced Neural Networks for relational domains [46] is relevant to this

thesis, Chapter 5, deals with the reproducibility of the experiments and results obtained

with the method. Therefore, the experiments are reimplemented and then reproduced,

replicated and reevaluated. The aim of these steps is to ensure that the reimplementation

is reliable for further extensions. In addition, general lessons are drawn to improve the

reproducibility of machine learning methods.

In Chapter 6, the method Knowledge Enhanced Graph Neural Networks (KeGNN) is pro-
posed, which uses knowledge enhancement layers in the context of graph neural networks.

KeGNN can be seen as a variant of Knowledge Enhanced Neural Networks. In previous

work, knowledge enhancement layers are used with an MLP, which is not powerful enough

to capture the graph structure in the representations. In contrast, graph neural networks

can also capture relational information at the level of the basic neural network, thus

increasing the overall model capacity. The effectiveness of the KeGNN is investigated in

experiments on various graph data sets.

While the previous chapters focus on knowledge enhancement on small graphs, Chapter 7
deals with the applicability of knowledge enhancement layers to large graphs. A method

called Restrictive Neighbourhood Sampling (RNS) is introduced to solve the problem of

an exponentially increasing number of nodes with respect to the number of knowledge

enhancement layers. In addition, experiments with knowledge enhancement layers on

large graphs are carried out on benchmark datasets from the Open Graph Benchmark

[93].

Previous methods have mainly dealt with node classification and homogeneous graphs

under the closed-world assumption. However, most knowledge graphs are multi-relational

and often incomplete. In this context, Chapter 8 presents the neuro-symbolic method

RuleKGE that focuses on heterogeneous knowledge graphs viewed under the open-world

71

assumption. It combines a symbolic reasoner to generate positive and negative facts that

are integrated into the training of knowledge graph embeddings for link prediction. In the

experiments, the approach is evaluated with different rule sets on the Family dataset.

72

5. Reproducibility Study on Knowledge
Enhanced Neural Networks

This chapter focuses on the reproducibility of Knowledge Enhanced Neural Networks

(KENN) introduced in Section 4.2.3 and the experiments with binary clauses [46]. The

motivation behind this is to extend KENN to larger graphs. To this end, we re-implement

the system available in Tensorflow in the graph-specific library PyTorch Geometric [61].

There are various other reasons for reimplementing a system besides for an extension [192,

8]. For that purpose, we provide a progressive and general approach for extending any

machine learning method by first going through reproducing, replicating and reevaluating
its results. This approach aims at ensuring that the reimplementation is reliable. It is

tempting to skip these steps and jump directly to the extension of the method. On the

contrary, we argue that this approach allows to better understand potential problems

at the specific stage where they occur. Further, we identify the obstacles encountered

when conducting these steps and how they may be overcome. The particular case on

which we detail and demonstrate our approach allows us to derive general lessons learned.

In general, this work can contribute to improve reproducibility in the field of machine

learning.

The work in this chapter is published [208].

Werner, L., Layaïda, N., Genevès, P., Euzenat, J. and Graux, D. (2024). Reproduce,

Replicate, Reevaluate. The Long but Safe Way to Extend Machine Learning Methods.

Proceedings of the AAAI Conference on Artificial Intelligence, 38(14), 15850-15858.

https://doi.org/10.1609/aaai.v38i14.29515

5.1. Reproducibility in Machine Learning

Experiment reproducibility is a cornerstone of scientific research. It is so for the experi-

menters, because it allows them to be more confident in the results they claim. It is so for

the research community, because it allows other researchers to stand on a solid ground

in developing their own work. This leads to more reliable and superior research results,

which is beneficial for the society as a whole.

In the machine learning community, strong incentives emerge to provide the necessary

information to reproduce results [164]. More generally, this is a basic open science

requirement to increase accountability and reproducibility. Reproducibility guidelines

73

5. Reproducibility Study on Knowledge Enhanced Neural Networks

Same software Different software

Same datasets Reproduce Replicate

Different datasets Reevaluate

Table 5.1.: Overview of the steps reproduce, replicate and reevaluate

and checklists focus on encouraging researchers to provide more detailed documentation

of their published work [99, 98, 1]. However, it is not obvious that such guidelines are

sufficient to independently reproduce experiments. Indeed, random operations (non-

determinism) may be introduced in several places [33], hyperparameters may change

the behavior of models [87, 137], components may exchange information in imprecise

ways, the data processing pipeline may be overlooked, etc. [135, 64]. All these factors can

compromise the reproducibility of experiments.

Various terminologies are considered for reproducibility in computer science [58, 72, 174,

165, 75]. We use and enrich the terminology adopted by the ACM [6], as summarized in

Table 5.1:

• ‘repeat’ means reexecuting an experiment with the same code, the same parameters,

the same data by the same experimenter;

• ‘reproduce’ means performing an experiment with the same software, the same

parameters and the same data but by a different experimenter;

• ‘replicate’ means performing an experiment independently on the same data but

using different software and by a different experimenter;

• to these, we add ‘reevaluate’which means performing an experiment independently

on different data.

When necessary, ‘reproducibility’ is also used as a term covering all such activities.

Given the high degree of non-determinism of machine learning techniques in general, the

problem of reproducing results has gained importance with the increase of interest in the

field. Recent surveys [76] show that even papers published at prestigious conferences are

not sufficiently documented and report on a reproducibility crisis [74]. An empirical study

[169] reveals difficulties in independently replicating published papers. Due to increased

awareness, several conferences, including AAAI, promote reproducibility by encouraging

authors to provide source code, experimental descriptions and datasets of their papers

through reproducibility guidelines and checklists [164, 99, 1].

Further, there is a surge in documented reproduction and replication attempts, particu-

larly encouraged through reproducibility challenges [164, 185, 140]. Such challenges ask

interested individuals to replicate results from recent papers. Difficulties such as the lack

of detailed documentation, e.g. hyperparameters [10] or even failure to reproduce [24] are

frequently reported. Their motivation differs, as the goal in this chapter is not to achieve

74

5.2. Experiments with Knowledge Enhanced Neural Networks

reproducibility for its own sake. Here, experiments are reproduced to ensure that the

reimplemented system retains the function of the knowledge enhancement in the initial

implementation.

5.2. Experiments with Knowledge Enhanced Neural Networks

KENN [48] is a neuro-symbolic method that integrates a base neural network (NN) with

knowledge enhancement layers in an end-to-end differentiable way. While KENN was

tested on several use cases [48, 73], particular interest is drawn to experiments with binary

clauses [46]. Since the aim is to extend KENN with more graph learning capabilities, it is

necessary to ensure that the work stands on firm ground. For that purpose, the experiments

performed by the authors are reproduced in this thesis.

KENN was applied to a node classification task on the Citeseer dataset [136], which

is a homogeneous, node-attributed and labelled graph. The Citeseer dataset consists of

scientific papers belonging to one of the six computer science research classes and citations

among them. The dataset is modelled as a graph where nodes represent papers and edges

represent citations. The prior knowledge provided to the knowledge enhancement layers

encodes the assumption that two papers that cite each other have the same class. According

to the pattern

∀𝑥∀𝑦 :¬Class(𝑥) ∨ ¬Cite(𝑥,𝑦) ∨ Class(𝑦), (5.1)

one logical clause is defined for each class and forms a set of prior logic clauses. While the

predictions of the base neural network are used as interpretation of the unary predicates

representing the classes in the real-valued domain, the citations between two papers are

known a priori. For this reason, the predictions of the binary predicate Cite(𝑥,𝑦) are set
to true (1.0) if an edges exists.

In [46], the authors report the performance of KENN for experiments on multiple training

set sizes (10%, 25%, 50%, 75%, 90%). For each size, 100 independent runs are conducted.

KENN is compared to the standalone base neural network and to Neural Machines (RNM)

[142] and Semantic-Based Regularization (SBR) [56]. The experiments support the follow-

ing hypotheses:

H1 KENN consistently outperforms the base neural network for all training set sizes.

H2 The performance gain due to the knowledge enhancement is larger when training data

is limited.

H3 KENN leads to similar or superior results compared to RNM and SBR.

75

5. Reproducibility Study on Knowledge Enhanced Neural Networks

Initial Implementation Initial Implementation

Reimplementation Reimplementation

NN KENN KENNNN

KENNNNKENNNN

Initial Data Additional Data

R
e
e
v
a
l
u
a
t
i
o
n

R
e
p
l
i
c
a
t
i
o
n

R
e
p
r
o
d
u
c
t
i
o
n

< <

<<

= =

Figure 5.1.: Overview of the methodology

5.3. Methodology

We extend KENN in the framework PyTorch [161] in conjunction with the library PyTorch

Geometric [61]. To this end, a comprehensive reproducibility study is the best way to

ensure that KENN is extended on a reliable basis. With this objective in mind, as illustrated

in Fig. 5.1, the following steps are conducted:

1. We reproduce the results obtained with the initial implementation;

2. We reimplement the initial experiments and replicate them;

3. We reevaluate the experiments on additional datasets.

For each step, we detail the required information, the obstacles we had to overcome and

how we achieved to overcome them. Furthermore, we evaluate whether the KENN results

are confirmed and report the lessons learned.

We refer to the following publicly available material. The reproduction and replication

is based on the results reported in the paper [46] (that we call the initial paper) and
on the reported experiments

1
(that we call the initial experiments). The experiments

make use of the Python package KENN2
2
,
3
. In addition, we also extract information

from other related papers [48, 47]. We preserve, as far as possible, the input (dataset)

and output format (results) of the initial experiment. In this thesis, the focus lies on the

transductive experiments with KENN. In the following, we refer to our implementation as

reimplementation.

All experiments in this thesis are conducted on amachine running an Ubuntu 20.4 equipped

with an Intel(R) Xeon(R) Silver 4114 CPU 2.20GHz processor, 192G of RAM and one GPU

Nvidia Quadro P5000. The reimplementation of the experiments is available at a dedicated

1https://github.com/rmazzier/KENN-Citeseer-Experiments
2https://github.com/DanieleAlessandro/KENN2
3https://github.com/HEmile/KENN-PyTorch

76

https://github.com/rmazzier/KENN-Citeseer-Experiments
https://github.com/DanieleAlessandro/KENN2
https://github.com/HEmile/KENN-PyTorch

5.4. Evaluation Criteria

Git repository
4
under the hash a894cae297b47f6d1acfa8e8dab99603f7b5e996. It contains the

following elements: (a) the source code, (b) the execution instructions, (c) the software
requirements, (d) the result evaluation script, (e) the raw files of the experiment results.

Further, the adaptions of the initial implementation to Pubmed and Cora is included.

5.4. Evaluation Criteria

In order to judge whether we have successfully reproduced, the question of evaluating

reproducibility arises. For this purpose, two reproducibility targets are defined.

As common in natural sciences, qualitative reproducibility refers to checking whether

experimental results support the hypotheses of the initial paper and come to the same con-

clusions. Coming rather from an engineering perspective, quantitative reproducibility
aims at obtaining the same or close results as the initial experiment. In Fig. 5.1, they are

respectively noted as > and =. In the context of the experiments with KENN, qualitative

reproducibility refers to checking if the confirmed hypotheses in the initial paper are still

supported by the reimplementation.

Regarding qualitative reproducibility, we focus on the hypotheses 𝐻1 and 𝐻2. The verifi-

cation of𝐻3 would involve reproducing the results of the baselines SBR and RNM which is

beyond the scope of the work in this chapter. To test 𝐻1 and 𝐻2, we adopt the procedures

used in the initial paper. For 𝐻1, a one-sided independent Student t-test with significance

threshold 0.01 is employed to assess the superiority of the mean accuracy of KENN over

the base neural network. For 𝐻2, which establishes a relation between the training set

size and the delta of base neural network and KENN, no precise evaluation procedure is

mentioned. However, the absolute difference between the mean test accuracies for the

experiments is observed.

In terms of quantitative reproducibility, absolute equality of the results is hard to be

expected, since even reexecuting the initial implementation does not lead to absolutely

equal numbers. This may be due to differences in software or hardware or the absence of

fixed seeds [33, 162, 166]. Therefore, we evaluate the steps of replication and reevaluation

by examining the distributions of the reported test results and in particular their similarity.

In order to test their equality, we compute the two-sided Kolmogorov-Smirnov goodness-

of-fit test (KS-test) [143], which checks whether two samples are drawn from the same

distribution. If the 𝑝-value of the test is below the significance threshold, there is evidence

that the results of the experiments are not drawn from the same distribution. It has to be

mentioned that the KS-test can only provide significant results in measuring inequality.

4https://gitlab.inria.fr/tyrex-public/reproducibility-aaai24

77

https://gitlab.inria.fr/tyrex-public/reproducibility-aaai24

5. Reproducibility Study on Knowledge Enhanced Neural Networks

Reported results Initial Implementation
train NN KENN Delta NN KENN Delta

10% 0.544 0.652 0.108

0.540

(0.067)

0.651

(0.017)

0.110

(0.067)

25% 0.629 0.702 0.073

0.630

(0.018)

0.702

(0.012)

0.072

(0.012)

50% 0.680 0.744 0.065

0.681

(0.187)

0.745

(0.012)

0.064

(0.021)

75% 0.733 0.788 0.055

0.733

(0.025)

0.791

(0.016)

0.058

(0.026)

90% 0.759 0.808 0.049

0.758

(0.027)

0.807

(0.022)

0.049

(0.028)

Table 5.2.: Reproduction Results

5.5. Reproduction

As a first step, the initial experiments with KENN are reproduced. Therefore, (a) the
executable, (b) the dataset, (c) the instructions and environment information to run the

executable and (d) the procedure to collect and interpret the results are required. Given

these elements, it is possible to process the instructions to reproduce the experiment.

5.5.1. Pitfalls and Workarounds

The paper [47] provides the KENN2
2
package. It contains the implementation of the

knowledge enhancement layers in Tensorflow but not the experiments. Through an

exchange with the authors, we gained access to the source code and data of the experiments

which were made publicly available
1
. They also pointed to another paper [46] which

further documents the experiments. The hyperparameters in the public implementation

correspond to the results reported in [46] but not to the results found in [47].

The repository provides (a) a reference to the KENN2 package, (b) a link to the dataset,

(c) a README file with instructions to run the code, and (d) a Jupyter notebook to analyse

the results. The initial experiments use a dataset that is included in the repository instead

of referring to an external, widely available version of the dataset. A link to the data source

was provided, but it was inaccessible. Neither the origin of the data nor any filtering or pre-

processing steps were documented. The instructions to run the experiments are reasonably

complete, including a description of the required Python modules as a requirements file

and the full command line to be run. However, the requirements only contain a list of

packages without their version number. This can be a critical concern as Python packages

evolve frequently, sometimes compromising compatibility. The Python version is not

defined either which can be crucial for the successful execution of the experiments. We

inferred it from the description of the KENN2 package. In both papers [47, 46] experimental

results are reported in numeric tables. Despite seeded random operations, we observe

78

5.5. Reproduction

subtle variations in the results. We note a non-deterministic 𝑠𝑒𝑡 () operation which may

introduce variation. As a result, exact quantitative reproducibility cannot be guaranteed.

5.5.2. Results

After achieving a fully functional environment setup, we successfully run the experiments.

The obtained results are reported in Table 5.2. In comparison to the results initially

provided [46], we add information such as the standard deviation of the test accuracies

over all runs and the 𝑝-values for a t-test.

Qualitative Reproducibility. For 𝐻1, KENN significantly outperforms the base neural

network for all training set sizes (𝑝 ≪ 0.01) which is consistent with the authors’ claims.

Regarding 𝐻2, we observe that the reported difference (column delta) in mean accuracy

between KENN and the base neural network is larger for smaller training set sizes. Note

that, since the initial experiments use paired samples, the means of the deltas can be

reported, though we can only report the difference of the means.

Quantitative Reproducibility. The reported and reproduced results cannot be compared

statistically, since the full sample of the reported results is not available.

5.5.3. Lessons Learned

L1: Provide a Precise Identification of the Software Environment, Source Code and Dataset.
Afirst lesson learned is that the complete description of the software environment including

version numbers of all modules should be provided. Furthermore, the datasets used should

be described precisely, including information on their origin and on any applied pre-

processing. Both are critical information to reproduction.

L2: Automate the Steps for Reproduction. A second lesson learned is that the reproduction

should be made as automatic as possible by the initial authors. Such an automation would

even be useful for the initial authors to be able to repeat their experiments routinely.

L3: Provide Contact Information and Be Reachable. The reachability and assistance of the

authors was essential to clarify open questions and to get access to key components for

reproducibility such as the experiment source code.

L4: Distinguish Different Experiments. A unique reference to the experiments was missing.

In fact, the authors published a first version of a paper [48] and then several others [46,

47] which contain improvements and additional experimental settings. Still, all papers

point to the same repository. This complicates the reproduction of the experiments of each

paper. It would be a good practice to specify for each paper the version of the repository

or to use another repository.

79

5. Reproducibility Study on Knowledge Enhanced Neural Networks

Parameter Value Paper Code Defaults

NN - Number of Hidden Layers 3 ✓ ✓
NN - Number of Hidden Neurons 50 ✓ ✓
NN - Hidden Layer Activation ReLu ✓ ✓
NN - Output Layer Activation Linear ✓ ✓
KENN - Clause Weight Initialization Constant, 0.5 ✓ ✓
KENN - Binary Preactivations 500 ✓ ✓
KENN - Number of KE Layers 3 ✓
KENN - Range Constraint [0.0, 500.0] ✓
Epochs 300 ✓
Batch Size Full-batch ✓
Loss function Categorical Cross-entropy ✓
Early Stopping - Patience 10 ✓
Early Stopping - Min Delta 0.001 ✓
Dropout Rate 0.0, no dropout ✓
Learning Rate 0.001 ✓
NN - Weight Initialization Random, Glorot uniform ✓
NN - Bias Initialization Constant, Zeroes ✓
Optimizer Adam [113], 𝛽1 = 0.9, 𝛽2 = 0.99, 𝜖 = 10

−7 ✓

Table 5.3.: The set of hyperparameters used in the initial experiments and how they were

recovered.

5.6. Replication

In this section, the reimplementation in PyTorch and the replication of the experiments

is detailed. Again, the obtained results are compared to the results of the published and

reproduced experiments. To reimplement the system, we first identify the main compo-

nents of the method by examining, on the one hand, the concepts of KENN introduced in

the initial paper. On the other hand, we examine the code of the initial implementation

to recover necessary information that is underspecified or not explicitly mentioned in

the paper. As main components we identify (a) the data pre-processing, (b) the model

definition, (c) the training loop, and (d) the hyperparameter definition. We reimplement

these components as follows.

Data pre-processing. We use the same Citeseer dataset and prior knowledge as provided

for the initial experiments. We preserve the data splitting procedure, as well as the

rebalancing of the prediction classes.

Model Definition. The KENN model consists of two stacked components: The base

neural network and the knowledge enhancement layers. In the initial implementation, the

base neural network is implemented with Keras [38] and the knowledge enhancement

layers are imported from the KENN2
2
package written in Tensorflow. We reimplement

both the base neural network and use the knowledge enhancement layers from the KENN2

package
3
.

80

5.6. Replication

Training Loop. In the training loop, we replace the optimizer and the loss function

implemented in Tensorflow by their PyTorch equivalent.

Hyperparameter Definition. We identify the hyperparameters in the experiments

and their values. To keep track of hyperparameters in a clean manner, we connect the

reimplementation to an experiment tracking tool [22].

5.6.1. Pitfalls and Workarounds

At first sight, the reimplementation in PyTorch seems straightforward. However, we strug-

gle in identifying the hyperparameters used in the initial implementation. The relevant

information has to be gathered from various sources. The set of revealed hyperparameters,

their assignments and how we recovered them is summarized in Table 5.3.

A first subset of hyperparameter values is explicitly named in the initial paper including

the architecture of the base neural network, the initialization of the clause weights and the

binary preactivation value. An additional subset of parameters is defined in a modifiable

script in the repository of the initial implementation. This script contains information

on early stopping (and related parameters), the number of epochs, as well as the size of

the validation set. Additional parameter values are required that are not mentioned in

the paper, nor in the code documentation. By reviewing the source code, we recover the

number of knowledge enhancement layers and the batch size, for example. An additional

subset of hyperparameters is implicitly introduced and defined by framework-specific

functions and their default assignments. These default values are found in the Tensorflow

software documentation. From there, we recover the weight initialization of the dense

layers in the base neural network and the optimizer-specific parameters.

Determining the values of some additional parameters turns out to be even more chal-

lenging. To get useful insights, we examine the isolated behavior of each component

to ensure that they produce the same output, given some input. While randomness is

essential to training neural networks, it complicates the analysis of the algorithm behavior.

For the inspection of some components, we temporarily simplify operations and replace

random numbers by fixed values. This allows to identify that linear layers are by default

differently initialized in Tensorflow and in PyTorch. In Tensorflow, they are initialized

randomly following a Glorot uniform distribution and the bias is initialized with zeroes.

However, in PyTorch the weights and biases are randomly initialized following the uniform

distribution.

5.6.2. Results

After recovering the full set of required parameter values and completing the reimplemen-

tation of KENN, we now assess the replicability of the experiments. The results of the

replication are summarized in Table 5.4.

81

5. Reproducibility Study on Knowledge Enhanced Neural Networks

Reimplementation

train NN KENN

Delta 𝑝-values

means KS Test

10% 0.550 (0.042) 0.629 (0.076) 0.079 0.001

25% 0.632 (0.016) 0.676 (0.088) 0.044 0.024

50% 0.681 (0.014) 0.741 (0.028) 0.060 0.583

75% 0.729 (0.022) 0.785 (0.039) 0.056 0.054

90% 0.748 (0.026) 0.806 (0.020) 0.058 0.702

Table 5.4.: Replication results

Qualitative Reproducibility. We first check whether 𝐻1 and 𝐻2 hold in the replicated

experiment. We observe that the 𝑝-values of the t-test comparing the test accuracies for

all training set sizes fall below the significance threshold in favor of 𝐻1 which is thus

supported by the replication. For 𝐻2, considering the deltas of the mean test accuracies

across the training set sizes, no clear relationship between training set size and its effect

on the knowledge enhancement is apparent. This may be due to a reproducibility failure

or to the lack of an explicit procedure to test 𝐻2 in the initial work. In conclusion, we are

able to confirm 𝐻1, but we are not able to replicate the results concerning 𝐻2.

Quantitative Reproducibility. The average accuracies of both implementations are

relatively close (the highest observed difference is 0.02). However, their distributions are

not identical. The similarity of the test accuracy distributions is computed against the test

accuracy of the reproduced results, since we do not have the initial results from the authors

of KENN. The 𝑝-values of the KS-test are listed in the right column. For the 10% training

size, a significant difference (𝑝 < 0.01) between the distributions of the reproduced and

replicated results is detected. For the remaining training set sizes, no difference appears

significant. Hence, we consider our results as reasonably similar to those of the initial

implementation, at least for large sample sizes. The accuracy obtained with 10% training

set size appears less variable than the one on larger training sets.

5.6.3. Lessons Learned

L5: Document Hyperparameters Exhaustively. The identification of all hyperparam-

eters together with their assignments is critical for replication as they can considerably

affect the results and thus the conclusions drawn from them. While some hyperparameters

such as learning rate and batch size are standard in deep learning methods, custom models

often define their own hyperparameters, such as KENN’s clause weights. Since they affect

different components, hyperparameters are often declared at different stages in the exper-

iment, which complicates their identification. In particular, some hyperparameters are

implicitly defined as default parameters in the used library and are easily overlooked. A

complete configuration file with the exhaustive list of hyperparameters, their description,

and their value is key to replicability.

82

5.7. Reevaluation

L6: Provide Clear Procedures to Check Claims. To evaluate qualitative reproducibility,
we rely on the authors’ procedures for verifying their hypotheses. With respect to 𝐻2, the

lack of a precise procedure complicates the evaluation of the replicability. Clear procedures

for the verification of claims are essential to ensure their replicability.

L7: Define Standards to Evaluate Reproducibility. In order to evaluate quantita-

tive reproducibility, we use the KS-test that can only give statistical evidence that two

distributions are not equal. Other metrics are proposed in [163]. To the best of our knowl-

edge, no community standard on the evaluation of quantitative reproducibility exists. A

community-agreed standard is needed to determine when two distributions of results are

considered equivalent.

5.7. Reevaluation

Having reproduced and replicated the experiments with KENN, we now reevaluate the

method on two more datasets Cora [144] and Pubmed [218]. The goal of this reevaluation

is first, to check if the implementations behave robustly in the same way on different

datasets and second, to evaluate whether the hypotheses for KENN are valid on other

datasets. These datasets are also citation graphs. While Cora and Citeseer have a similar

size, Pubmed is significantly larger. Similarly to the experiments on Citeseer, the prior

knowledge encodes a relation of paper category and citations. To avoid variations in the

results due to hyperparameters, we use the set identified in Table 5.3 for all datasets. In

general, hyperparameters should be determined separately for each dataset in order to

obtain models with the best possible prediction quality. However, we are mainly concerned

with obtaining the same results instead of the best possible results.

5.7.1. Results

The results for Cora and Pubmed are shown in Table 5.5 and 5.6. When applying KENN

to Pubmed, we encounter a performance issue with the data pre-processing in the initial

implementation. Wemodify the pre-processing to improve its scalability while maintaining

its functionality.

Qualitative Reproducibility. 𝐻1 is supported in both implementations for Cora (𝑝 ≪
0.01). Concerning 𝐻2, the deltas in the initial implementation indicate a relationship

between decreasing training set size and knowledge enhancement. However, this difference

is rather uncertain for the reimplementation. For 𝐻1 on PubMed, the 𝑝-values of the t-

tests are not below the significance threshold across all training set sizes, for the initial

implementation only for training set sizes 10% and 25% and for the reimplementation for

training set sizes 10%, 50%, 75% and 90%. Hence, no significant performance is gained

with KENN. Furthermore, no monotonically increasing benefit of knowledge enhancement

83

5. Reproducibility Study on Knowledge Enhanced Neural Networks

Initial Implementation Reimplementation

train NN KENN Delta NN KENN

Delta

means

𝑝-values

KS-Test

10%

0.530

(0.029)

0.750

(0.017)

0.220

(0.030)

0.576

(0.016)

0.766

(0.010)

0.190 8.9 10
−4

25%

0.606

(0.018)

0.800

(0.012)

0.193

(0.016)

0.647

(0.009)

0.819

(0.012)

0.173 8.4 10
−10

50%

0.652

(0.013)

0.833

(0.009)

0.187

(0.017)

0.678

(0.009)

0.831

(0.013)

0.152 5.9 10
−1

75%

0.691

(0.016)

0.850

(0.014)

0.159

(0.018)

0.686

(0.013)

0.833

(0.015)

0.147 2.9 10
−4

90%

0.715

(0.027)

0.871

(0.016)

0.156

(0.028)

0.743

(0.012)

0.913

(0.017)

0.170 9.2 10
−11

Table 5.5.: Reevaluation results on the Cora dataset

Initial Implementation Reimplementation

train NN KENN Delta NN KENN

Delta

means

𝑝-values

KS-Test

10%

0.333

(0.096)

0.405

(0.002)

0.071

(0.096)

0.326

(0.098)

0.404

(0.003)

0.077 3.9 10
−1

25%

0.341

(0.108)

0.416

(0.002)

0.075

(0.108)

0.380

(0.080)

0.414

(0.004)

0.034 7.1 10
−2

50%

0.409

(0.095)

0.443

(0.004)

0.033

(0.096)

0.364

(0.133)

0.441

(0.005)

0.077 1.3 10
−1

75%

0.447

(0.143)

0.498

(0.004)

0.051

(0.143)

0.414

(0.176)

0.495

(0.007)

0.081 1.3 10
−1

90%

0.505

(0.011)

0.510

(0.008)

0.004

(0.011)

0.504

(0.015)

0.504

(0.015)

-0.0001 5.9 10
−1

Table 5.6.: Reevaluation results on the Pubmed dataset

for smaller training set sizes is observed with both implementations, therefore 𝐻2 is not

supported by Pubmed.

Quantitative Reproducibility. Comparing the distributions of the test accuracies in both

experiments, the 𝑝-values of the KS-tests are below the significance threshold and thus

suggest rejection for all training dimensions except 50%. Therefore, we have statistical

evidence for inequality and thus have not reached qualitative reproducibility on Cora.

However, for Pubmed, the behavior in both implementations is aligned. The KS-test sug-

gests no significant difference between both implementations. In conclusion, quantitative

reproducibility is considered achieved on Pubmed.

84

5.8. Conclusion and Outlook

Reproduction

L1 Provide a precise identification of the software environment, source code and

dataset

L2 Automate the steps for reproduction

L3 Provide contact information and be reachable

L4 Distinguish different experiments

Replication
L5 Document hyperparameters exhaustively

L6 Provide clear procedures to check claims

L7 Define standards to evaluate reproducibility

Reevaluation L8 Conduct hyperparameter search

L9 Verify results on other datasets

Table 5.7.: Summary of the lessons learned

5.7.2. Lessons Learned

L8: Conduct Hyperparameter Search. As expected, with the hyperparameter values

considered earlier KENN does not achieve competitive results on Cora and Pubmed in

comparison to the state-of-the-art [160]. Hyperparameter tuning significantly affects

the results of the experiment. With an appropriate set of hyperparameters for Cora and

Pubmed, better results with KENN may be obtained.

L9: Verify Results on Other Datasets. Overall, the reevaluation experiments show

that KENN improves the accuracy on the Cora dataset, but not on the Pubmed dataset.

Furthermore, by reevaluation on PubMed, we can detect performance issues and address

them, which makes the code applicable to larger datasets in general. As a lesson learned, it

is derived that the application of a model to various datasets can either strengthen results

by showing robustness or reveal weaknesses of methods that occur on specific datasets.

5.8. Conclusion and Outlook

In this chapter, we first progressively reproduced, replicated and reevaluated the exper-

iments with KENN before extending it. In terms of qualitative reproducibility, in most

experiments the hypothesis that KENN outperforms the base neural network (𝐻1) is

supported. The relationship between training set size and accuracy (𝐻2) is observed for

the reproduced experiments but less clear for the replicated and reevaluated experiments.

We summarize all the lessons learned in Table 5.7.

In a broader context, the progressive approach in this work can be incorporated in a

general workflow of extending a related method in machine learning while considering

reproducibility steps, as illustrated in Fig. 5.2. While it is tempting to directly jump from a

task to the development of a new method, the inclusion of the reproduce, replicate and

reevaluate steps can increase the trust in experimental results. To the three steps conducted

in this work, record and repeat can be added to better integrate the new (extended) method

in the state-of-the-art (SOTA). Recording provides a sufficiently detailed documentation

to make the new method accessible and reproducible for the community. Repeating the

85

5. Reproducibility Study on Knowledge Enhanced Neural Networks

SOTA
choose

method

extend

method

new

method

reproduce replicate reevaluate repeatrecord

Integrate new work in the state-of-the-art

Figure 5.2.: The general pipeline of extending machine learning methods with the repro-

ducibility steps.

experiment can serve as a self-check of documentation and/or automation. Fig. 5.2 displays

an ideal situation in which the path to extension is flawless. In reality, each step may fail

and lead the design back to the previous action. However, it helps to isolate the cause of

failure at the earliest possible stage.

Further, we note that KENN predominantly satisfies common reproducibility guidelines.

However, we encounter difficulties in reproducing, replicating and reevaluating this

method. This shows that even though guidelines impose an additional burden for develop-

ers, easily and clearly reproducible work reduces the effort required for extending previous

work and therefore accelerates advancements. In this sense, reproducibility guidelines

should be continuously evaluated and modified (if needed) to ensure that they effectively

serve their purpose. From our point of view in the context of this work, reproducibility

checklists could improve by integrating some of our lessons learned.

Moreover, common reproducibility guidelines are mainly oriented towards reproduction,

which ensures that published results correspond to those obtained from the code. Given

strong automation, this may only require to clone and run. Even if replication and

reevaluation outweigh the effort of reproduction, in return, they provide more insight

into the details of an implementation or a method. Moreover, reimplementations make

methods more available to the community. In this sense, efforts towards replication and

reevaluation should continue to be encouraged, e.g. through reproducibility tracks or

challenges [154, 97].

In addition to the general conclusions, this chapter has provided some insights with

relevants to the further course of this work. In particular, the obtained results were verified

with the stepwise approach and the reimplementation was tested for reliability. In addition,

the portability of the results to other data sets was examined. This study has increased the

understanding of the method and provides a good basis for adding extensions based on

the reimplementation.

The lessons learned from this chapter are applied in particular to the following experiments

of this thesis in order tomake them reproducible. Thus, wemake the code of all experiments

publicly available, list the parameters used and the software requirements, provide a hash

and conduct significance tests to evaluate hypotheses.

86

6. KeGNN: Knowledge Enhancement of
Graph Neural Networks

The previous chapter focused on the reproducibility of the experiments with KENN [46],

where the knowledge enhancement layers are stacked onto a simple multi-layer perceptron

(MLP). However, an MLP is not powerful enough to incorporate graph structure into the

representations. Thus, relational information can only be introduced by binary predicates

in the clauses at the knowledge enhancement part.

In this chapter, the neuro-symbolic approach Knowledge enhanced Graph Neural Networks
(KeGNN) is presented to conduct node classification given graph data and a set of prior

knowledge in form of first-order logic clauses. In KeGNN, knowledge enhancement layers

[46] are stacked on top of a GNN and adjust its predictions in order to increase the

satisfaction of some prior knowledge. In addition to the parameters of the GNN, the

knowledge enhancement layers contain learnable clause weights that reflect the impact of

the prior knowledge on the predictions. Both components form an end-to-end differentiable

model. KeGNN can be seen as an extension to KENN [46] that was successfully applied

to semantic point cloud segmentation, image segmentation and multi-label classification

[46, 45, 73]. In addition, KeGNN integrates a graph neural network as more expressive

basis. Here, KeGNN is instantiated in conjunction with two well-known GNNs: Graph

Attention Networks [196] and Graph Convolutional Networks [114]. KeGNN is applied to

the benchmark datasets for node classification Cora, Citeseer, PubMed [218] and Flickr

[221].

The work of this chapter is published [207].

L. Werner, N. Layaïda, P. Genevès and S. Chlyah, "Knowledge Enhanced Graph

Neural Networks," 2023 IEEE 10th International Conference on Data Science and

Advanced Analytics (DSAA), Thessaloniki, Greece, 2023, pp. 1-10, doi: 10.1109/D-

SAA60987.2023.10302495.

It has been further presented at the 1st International Workshop on Knowledge-Based

Compositional Generalization (KBCG) held in conjunction with IJCAI 2023
1
.

1https://knowledgeai.github.io/

87

https://knowledgeai.github.io/

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

Figure 6.1.: An example extract of the Citeseer citation graph. Nodes represent scientific

publications and labels represent their topics. Edges represent citations be-

tween them.

6.1. Method

KeGNN is a neuro-symbolic approach that can be applied to node classification tasks

with the capacity of handling graph structure at the base neural network level. More

precisely, at its core, KeGNN consists of two components that can both handle graph

data and together form an end-to-end differentiable model. As base component, a graph

neural network produces pre-activations based on node-level and edge-level numerical

information. Knowledge enhancement layers refine these predictions guided by a set

of prior knowledge with the goal of increasing the satisfaction of defined knowledge.

The model takes two types of input: (1) real-valued graph data and (2) prior knowledge

expressed in first-order logic.

6.1.1. Graph-structured Data

First, KeGNN takes as input an node-attributed, labelled graphG = (V, E,X,Y) that consists
of sets of 𝑛 nodes N,𝑚 edges E, node features X ∈ R𝑛×𝑑 of dimension 𝑑 and node labels

Y ∈ {0, 1}𝑛×𝑐 with 𝑐 classes. The label vector y contains one-hot encoded truth labels for 𝑐

classes. In vector notation, the features and labels of a node 𝑣 are described as x ∈ R𝑑 and
y ∈ {0, 1}𝑐 . The edges of the graph can be homogeneous or heterogeneous with multiple

edge types.

88

6.1. Method

Example 6.1.1 (Groundings of Unary and Binary Predicates). Let us define a citation
graph GCit that consists of scientific publications and citations between them. Figure 6.1

shows an extract of a citation graph that is used as example to guide through this chapter.

The publications are represented by a set of nodes VCit and citations by a set of edges ECit.
Publications are attributed with features XCit that describe their content as vectors [148].

Each node is labelled with one of the six topic categories {AI, DB, HCI, IR, ML, AG} that

are encoded in YCit. The classes are abbreviations for the categories Artificial Intelligence,
Databases, Human-Computer Interaction, Information Retrieval, Machine Learning and
Agents. Since all nodes (publications) and edges (citations) have the same type, GCit is a

homogeneous graph.

6.1.2. Prior Knowledge

A finite set of ℓ prior knowledge formulae K is provided to KeGNN. The knowlege is

expressed in the logical language L that is defined over sets of constants C, variables X
and predicates P. Predicates have an arity 𝑟 of one (unary) or two (binary): P = P𝑈 ∪
P𝐵 . Predicates of arity 𝑟 > 2 are not considered in this work. Unary predicates describe

nodes, and binary predicates describe relations. L supports negation (¬) and disjunction

(∨). Each formula 𝜙 ∈ K is defined as a clause

∨𝑞

𝑗=1
𝑜 𝑗 with 𝑞 atoms 𝑜1 ∨ . . . ∨ 𝑜𝑞 . Since

the prior knowledge is general, all clauses are assumed to be universally quantified. A

grounded clause is denoted as 𝜙 [𝑥1, 𝑥2, ...|𝑐1, 𝑐2, ...] with variables 𝑥𝑖 ∈ X and constants

𝑐𝑖 ∈ C. The set of all grounded clauses in a graph is G(K, C).

Example 6.1.2 (Prior Knowledge on the Citation Graph). The graph GCit in Figure 6.1

is described with L. Nodes are represented by a set of constants C = {𝑎, 𝑏, . . . , 𝑓 }. The
node labels are expressed as a set of unary predicates P𝑈 = {AI,DB, . . . ,AG} and edges

as a set of binary predicates P𝐵 = {Cite}. L has a set of variables X = {𝑥,𝑦}. The atom
AI(x), for example, expresses the membership of 𝑥 to the class AI and Cite(x, y) denotes
the existence of a citation between 𝑥 and 𝑦. Some prior knowledge K is written as a set

of ℓ = 6 clauses in L. Here, the assumption is denoted that two publications citing each

other are member of the same class:

𝜙AI : ∀𝑥𝑦¬AI(x) ∨ ¬Cite(x, y) ∨ AI(y)
𝜙DB : ∀𝑥𝑦¬DB(x) ∨ ¬Cite(x, y) ∨ DB(y)
. . .

𝜙AG : ∀𝑥𝑦¬AG(x) ∨ ¬Cite(x, y) ∨ AG(y)

The atoms are grounded by replacing the variables 𝑥 and 𝑦 with the constants {𝑎, 𝑏, . . . 𝑓 }
to obtain the sets of unary groundings {AI(a),ML(b), . . . , IR(f)} and binary groundings

{Cite(a, d),Cite(a, e), . . . ,Cite(a, f)}. Assuming a closed world and exclusive classes, neg-

ative facts are derived, such as {¬DB(a),¬IR(a), . . . ,¬Cite(a, b)}.

Note that the knowledge encoded here is considered as soft knowledge that does not need
to fully be satisfied in a logical sense and encodes assumptions that may be violated by

89

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

some instances. For example, there may be two publications that cite each other belong to

different classes. The goal is not to fully satisfy the rules but rather refine predictions in

order to be more consistent with the knowledge. Several ways to encode prior knowledge

exist. Knowledge can be manually handcrafted from common sense assumptions, as in

Example 6.1.2. Furthermore, knowledge might be automatically extracted with rule mining

algorithms, as described in Section 2.3.

6.1.3. Fuzzy Semantics

Let us consider an attributed and labelled graph G and the prior knowledgeK . WhileK is

defined in the logical language L, the neural component in KeGNN relies on continuous

and differentiable representations. To interpret Boolean logic in the real-valued domain,

KeGNN uses fuzzy logic [220], which maps Boolean truth values to the continuous interval

[0, 1] ⊂ R. A constant in C is interpreted as a real-valued feature vector h ∈ R𝑑 . A
predicate 𝑃 ∈ P with arity 𝑟 is interpreted as a function

𝑓𝑃 : R𝑟×𝑑 ↦→ [0, 1] (6.1)

that takes 𝑟 feature vectors as input and returns a truth value.

Example 6.1.3 (Binary Predicates in KeGNN on the Citation Graph). In the example,

a unary predicate 𝑃𝑈 ∈ P𝑈 = {AI,DB, . . .} is interpreted as a function 𝑓𝑃𝑈 : R𝑑 ↦→ [0, 1]
that takes a feature vector h and returns a truth value indicating whether the node belongs

to the class encoded as 𝑃𝑈 . The binary predicate Cite ∈ P𝐵 is interpreted as the function

𝑓Cite(𝑣,𝑢) =
{
1, if (𝑣,𝑢) ∈ ECit
0, else.

(6.2)

𝑓Cite returns the truth value one if there is an edge between two nodes 𝑣 and 𝑢 in GCit and

zero otherwise.

T-conorm functions ⊥ : [0, 1] × [0, 1] ↦→ [0, 1] [116] take real-valued truth values of two

literals and define the truth value of their disjunction. The Gödel t-conorm function for

two truth values t𝑖, t 𝑗 is
⊥(t𝑖, t 𝑗) ↦→ max(t𝑖, t 𝑗). (6.3)

To obtain the truth value of a formula 𝜙 : 𝑜1 ∨ ... ∨ 𝑜𝑞 , the function ⊥ is extended to a

vector t of 𝑞 truth values: ⊥(t1, t2, ..., t𝑞) = ⊥(t1,⊥(t2...⊥(t𝑞−1, t𝑞))). Fuzzy negation over

truth values is defined as t ↦→ 1 − t [220].

Example 6.1.4 (A Grounded Clause). Given the clause 𝜙AI : ∀𝑥𝑦 ¬AI(x) ∨¬Cite(x, y) ∨
AI(y) and its grounding 𝜙AI [𝑥,𝑦 |𝑎, 𝑏] : AI(a) ∨ ¬Cite(a, b) ∨ AI(b) to the constants 𝑎 and

𝑏 and truth values for the grounded predicates AI(a) = t1, AI(b) = t2 and Cite(a, b) = t3,
the truth value of 𝜙AI [𝑥,𝑦 |𝑎, 𝑏] is max{max{(1 − t1), (1 − t3)}, t2}.

90

6.1. Method

Figure 6.2.: Overview of the KeGNN architecture. A GNN outputs predictions which are

interpreted as truth values for the unary predicates in the logical language

and fed to the knowledge enhancement layers. The knowledge enhancement

layers return refinements for the predictions.

6.1.4. Model Architecture

The way KeGNN computes the final predictions is divided in two stages. First, a GNN

predicts the node classes given the features and the edges. Second, the knowledge en-

hancement layers use the predictions as truth values for the grounded unary predicates

and update them with respect to the knowledge. An overview of KeGNN is illustrated in

Figure 6.2.

6.1.4.1. Graph Neural Network Component

The role of the GNN is to exploit feature information in the graph structure. The key

strength of a GNN is to enrich node representations with graph structure by nesting 𝑘

message passing layers, as introduced in Section 3.2. Per layer, the representations of

neighbouring nodes are aggregated and combined to obtain updated representations. The

node representation h𝑘+1𝑣 in the 𝑘-th message passing layer is

h𝑘+1𝑣 = combine
(
h𝑘𝑣 , aggregate

(
𝑚𝑣,𝑢 |𝑢 ∈ N1(𝑣)

))
. (6.4)

The layers contain learnable parameters that are optimized with backpropagation. In

this chapter, we consider two well-known GNNs as components for KeGNN: Graph

Convolutional Networks (GCN) [114] and Graph Attention Networks (GAT) [196], see

Section 3.2.1 and Section 3.2.2. While GCN considers the graph structure as known,

GAT allows for assessing the importance of the neighbours with attention weights 𝛼𝑣𝑢

91

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

between node 𝑣 and node 𝑢. In case of multi-head attention, the attention weights are

calculated multiple times and concatenated which allows for capturing different aspects

of the input data. In KeGNN, the GNN implements the functions 𝑓𝑃𝑈 for unary predicates,

see Equation 6.1 in Section 6.1.3). In other words, the predictions of the GNN are used as

truth values for the grounded unary predicates in the symbolic component

𝑓𝑃𝑈 := 𝑓GCN(h0, E, 𝜃GCN) .

In contrast KENN [46] does not consider graph structure at base neural network level:

𝑓𝑃𝑈 := 𝑓MLP(h0, 𝜃MLP).

6.1.4.2. Symbolic Component

To refine the predictions of the GNN, one or more knowledge enhancement layers are

stacked onto the GNN to update its predictions Y to Y′. The goal is to increase the

satisfaction of the prior knowledge. The predictions Y of the GNN serve as input to

the symbolic component where they are interpreted as fuzzy truth values for the unary

grounded predicates U := Y with U ∈ R𝑛×𝑐 . Fuzzy truth values for the groundings of

binary predicates are encoded as a matrix B where each row represents an edge (𝑣,𝑢) and
each column represents an edge type 𝑒 . In the context of node classification, the GNN

returns only predictions for the node classes, while the edges are assumed to be given. A

binary grounded predicate is therefore set to truth value 1 (true) if an edge between two

nodes 𝑣 and 𝑢 exists:

B[(𝑣,𝑢),𝑒] =

{
1, if (𝑣,𝑢) of type 𝑒 ∈ E
0, else.

(6.5)

Example 6.1.5 (Unary and Binary Groundings on the Citation Graph). In case of

the beforementioned citation graph of Figure 6.1, the unary and binary groundings U and

B are defined as:

U :=


AI(a) . . . AG(a)
AI(b) . . . AG(b)
...

...

AI(f) . . . AG(f)


B :=



Cite(a, d)
Cite(a, e)
Cite(a, c)

...

Cite(c, e)
Cite(e, f)


.

Since we only have one binary predicate Cite in this example, B has only one column.

To enhance the satisfaction of clauses that contain both unary and binary predicates, their

groundings are joined into one matrix M ∈ R𝑚×𝑘 with 𝑘 = 2 · |P𝑈 | + |P𝐵 |. M is computed

by joining U and B so that each row ofM represents an edge (𝑣,𝑢). As a result,M contains

all required grounded unary predicates for the edges and nodes in the graph.

92

6.1. Method

Example 6.1.6 (Joined Groundings on the Citation Graph). For the example citation

graph, we obtain M as follows:

As mentioned previously, a knowledge enhancement layer consists of multiple clause
enhancers. A clause enhancer is instantiated for each clause 𝜙𝑖 ∈ K . Its aim is to compute

refinements 𝛿M𝜙𝑖 for the groundings inM that increase the satisfaction of 𝜙𝑖 .

First, fuzzy negation is applied to the columns ofM that correspond to negated atoms in 𝜙 .

Then, the refinements are computed by a t-conorm boost function 𝛿𝜙 [48], as introduced in

Section 4.2.3. In this case,M represents the preactivations Z.

Δ
𝜙

𝑖 𝑗
= 𝛿𝜙 (Z)𝑖 𝑗 = 𝑤𝜙 · softmax(Z)𝑖 = 𝑤𝜙 ·

𝑒Z𝑖 𝑗∑𝑞

𝑙=1
𝑒Z𝑖𝑙

.

The function 𝛿𝜙 : [0, 1]𝑞 ↦→ [0, 1]𝑞 takes 𝑞 truth values and returns refinements to those

truth values such that the satisfaction is increased: ⊥(t) ≤ ⊥(t + 𝛿 (t)). The boost function
𝛿𝑤𝜙

employs a clause weight 𝑤𝜙 that is initialized in the beginning of the training and

optimized during training as a learnable parameter. The refinements for the groundings

calculated by 𝛿𝑤𝜙
are proportional to𝑤𝜙 . Therefore,𝑤𝜙 determines the magnitude of the

update and thus reflects the impact of a clause. The refinements to the atoms that do not

occur in a clause are set to zero. The boost function is applied row-wise toM as illustrated

in the following example.

Example 6.1.7 (Refinements on theCitationGraph). Given the clause𝜙𝐴𝐼 : ∀𝑥𝑦¬AI(x)∨
¬Cite(x, y) ∨AI(y) and the clause weight𝑤AI, the refinements for this clause are 𝛿M𝜙𝐴𝐼 =

𝑤AI ·



𝛿¬AIx (a) 0 . . . 𝛿AIy (c) 0 . . . 𝛿¬Cit(a,c)
𝛿¬AIx (a) 0 . . . 𝛿AIy (e) 0 . . . 𝛿¬Cit(e,a)
𝛿¬AIx (a) 0 . . . 𝛿AIy (d) 0 . . . 𝛿¬Cit(c,d)

...
...

...

𝛿¬AIx (e) 0 . . . 𝛿AIy (f) 0 . . . 𝛿¬Cit(e,f)


(6.6)

The values of 𝛿M𝜙𝐴𝐼 are calculated as

𝛿¬AIx (a) = 𝜙𝑤AI
(z)𝑎 = −

𝑒−z𝐴𝐼 (𝑎)

𝑒−z𝐴𝐼 (𝑎) + 𝑒−z𝐶𝑖𝑡 (𝑎,𝑐) + 𝑒z𝐴𝐼 (𝑐) (6.7)

93

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

Name #nodes #edges #features #Classes train/valid/test split
Citeseer 3,327 9,104 3,703 6 1817/500/1000

Cora 2,708 10,556 1,433 7 1208/500/1000

PubMed 19,717 88,648 500 3 18217/500/1000

Flickr 89,250 899,756 500 7 44624/22312/22312

Table 6.1.: Overview of the Citeseer, Cora, PubMed and Flickr datasets

Each clause enhancer computes refinements 𝛿M𝜙 to increase the satisfaction of a clause

independently. The refinements of all clause enhancers are finally added, resulting in a

matrix 𝛿M =
∑
𝜙∈K 𝛿M𝜙 . To apply the refinements to the initial predictions, 𝛿M has to be

added to Y. The refinements in 𝛿M can not directly be applied to the predictions Y of the

GNN. Since the unary groundings U were joined with the binary groundings B, multiple

refinements may be proposed for the same grounded unary atom. For example, for the

grounded atom AI(c) the refinements 𝛿¬AIy (c) and 𝛿¬AIx (c) are computed, since 𝑐 occurs in

the grounded clauses 𝜙AI [𝑥,𝑦 |𝑎, 𝑐] and 𝜙AI [𝑥,𝑦 |𝑐, 𝑒]. In citation graph in Example 6.1.1 the

node 𝑣𝑐 occurs in first place of edge (𝑣𝑎, 𝑣𝑐) and in second place of edge (𝑣𝑐, 𝑣𝑒). Therefore,
all refinements for the same grounded atom are grouped and summed, which reduces the

size ofM to the size of U.

To ensure that the updated predictions remain truth values in the range of [0, 1], the
knowledge enhancement layer refines the preactivations Z of the GNN and to Z′ and then

applies the activation function 𝜎 to Z′ in order to obtain the final predictions: Y′ = 𝜎 (Z′).
The refinements by the knowledge enhancer are added to the preactivations Z of the GNN

and passed to 𝜎 to obtain the updated predictions

Y′ = 𝜎

(
Z +

∑︁
𝜙∈K

𝛿U𝜙

)
(6.8)

where 𝛿U𝜙 is the matrix obtained by aggregating the refinements to the unary predicates

from 𝛿M𝜙 . Regarding the binary groundings, the values in B are set to a high positive

value that results in one when 𝜎 is applied.

6.2. Experimental Evaluation

To evaluate the performance of KeGNN, node classification experiments are conducted.

In the following, KeGNN is called KeGCN and KeGAT when instantiated to a GCN or

a GAT, respectively. As additional baseline, we consider KeMLP, that stacks knowledge
enhancement layers onto an MLP, as proposed in [46]. Furthermore, the standalone neural

models MLP, GCN and GAT are used as baselines.

94

6.2. Experimental Evaluation

6.2.1. Datasets

The models are tested on the datasets Citeseer, Cora, PubMed and Flickr that are common

benchmarks for node classification. Citeseer, Cora and PubMed are citation graphs that

encode citations between scientific papers as in Example 6.1.2. Flickr contains images

that are represented by nodes and shared properties between them that are represented

by edges. All datasets are modelled as homogeneous, labelled and attributed graphs as

defined in Section 6.1.1. Table 6.1 gives an overview of the datasets used in this chapter.

The datasets are publicly available on the dataset collection of PyTorch Geometric [61].

For the split into train, valid and test set, we take the pre-defined splits in [35] for the

citation graphs and in [221] for Flickr. Word2Vec vectors [148] are used as node features

for the citation graphs and image data for Flickr. The models are trained and evaluated in

a transductive setting.

6.2.2. Prior Knowledge

The set of prior logic for the knowledge enhancement layers is manually defined. In this

work, we encode the assumption that the existence of an edge for a node pair points to their

membership to the same class and hence provides added value to the node classification

task. In the context of citation graphs, this implies that two documents that cite each

other refer to the same topic, while for Flickr, connected images share the same properties.

Following this pattern for all datasets, a clause𝜙 : ∀𝑥𝑦 : ¬Classi(x)∨ ¬Link(x, y)∨Classi(y)
is instantiated for each node class Classi with i ∈ {1, . . . , c}.

6.2.3. Implementation

The source code of the experiments are publicly available
2
. It is based on PyTorch [161]

and the graph learning library PyTorch Geometric [61]. The Weights & Biases tracking

tool [22] is used to monitor the experiments. More experimental details can be found in

Appendix A.1.

6.2.4. Results

Performance. To compare the performance of all models, we examine the average test

accuracy over 50 runs (10 for Flickr) for the knowledge enhanced models KeMLP, KeGCN,

KeGAT and the standalone base models MLP, GCN, GAT on the listed datasets. The results

are presented in Table 6.2. For Cora and Citeseer, KeMLP leads to a significant improvement

over MLP (p-value of one-sided t-test ≪ 0.05). In contrast, no significant advantage of

KeGCN or KeGAT in comparison to the standalone base model is observed. Nevertheless,

all GNN-based models are significantly superior to KeMLP for Cora. This includes not

2https://gitlab.inria.fr/tyrex/kegnn. The hash is ddb05f37d390fd06181bac8275aac45962b74ff0

95

https://gitlab.inria.fr/tyrex/kegnn

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

MLP KeMLP GCN KeGCN GAT KeGAT

Cora 0.7098

(0.0080)

0.8072

(0.0193)

0.8538

(0.0057)

0.8587
(0.0057)

0.8517

(0.0068)

0.8498

(0.0066)

CiteSeer 0.7278

(0.0081)

0.7529

(0.0067)

0.748

(0.0102)

0.7506

(0.0096)

0.7718

(0.0072)

0.7734
(0.0073)

PubMed 0.8844

(0.0057)

0.8931
(0.0048)

0.8855

(0.0062)

0.8840

(0.0087)

0.8769

(0.0040)

0.8686

(0.0081)

Flickr 0.4656

(0.0018)

0.4659

(0.0012)

0.5007
(0.0063)

0.4974

(0.0180)

0.4970

(0.0124)

0.4920

(0.0189)

Table 6.2.: Average test accuracy of 50 runs (10 for Flickr). The standard deviations are

reported in brackets and the highest value per dataset is marked in bold.

Model Avg Epoch Time

MLP 0.02684

GCN 0.03109

GAT 0.06228

KeMLP 0.04304

KeGCN 0.03747

KeGAT 0.08384

Table 6.3.: Comparison of the average epoch times on the Citeseer dataset.

only KeGCN and KeGAT, but also the GNN baselines. For Citeseer, KeGAT and GAT both

outperform KeMLP. In the case of PubMed, only a significant improvement of KeMLP

over MLP are observed, while the GNN-based models and their enhanced versions do not

provide any positive effect. For Flickr, no significant improvement between the base model

and the respective knowledge enhanced model are observed. Nevertheless, all GNN-based

models outperform KeMLP, reporting significantly higher mean test accuracies for KeGAT,

GAT, GCN and KeGCN.

Runtime. The average runtimes per epoch on the Citeseer dataset are compared for all

models in Tab 6.3. The runtimes were reported for models with three hidden layers and

three knowledge enhancement layers in full-batch training. It is noted that the knowledge

enhancement layers lead to increased runtimes compared to the base models since the

overall model complexity is higher.

6.2.5. Exploitation of the Graph Structure

It turns out that the performance gap between MLP and KeMLP is larger than for KeGNN

in comparison to the standalone GNN. To explain this observation, we examine how

the graph structure affects the prediction performance. In Figure 6.3 we analyse the

accuracy grouped by the node degree for the entire graph for MLP vs. KeMLP and GCN

vs. KeGCN. The findings for KeGAT are in line with those for KeGCN. It is observed that

KeMLP performs better compared to MLP as the node degree increases. By contrast, when

comparing GCN and KeGCN, for both models, the accuracy is superior for nodes with a

higher degree.

96

6.2. Experimental Evaluation

0 1 5 > 52

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Accuracy Grouped by Node Degree
MLP
KeMLP

3 4

0 1 2 4 5 > 53

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

0 1 2 5 > 5Node Degree

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

Figure 6.3.: The accuracy grouped by the node degree for MLP vs. KeMLP (above) and

GCN vs. KeGCN (center) and GAT vs. KeGAT(below) on Citeseer.

This shows that rich graph structure is helpful for the node classification in general.

Indeed, the MLP is a simple model that misses information on the graph structure and

thus benefits from graph structure contributed by KeMLP in the form of binary predicates.

On the contrary, standalone GNNs, even without knowledge enhancement layers, can

handle graph structure by using message passing techniques to transfer learned node

representations between neighbours. The prior knowledge introduced in the knowledge

enhancer is simple. It encodes that two neighbours are likely to be of the same class. An

explanation for the small difference in performance is that GNNs may be able to capture

and propagate this simple knowledge across neighbours implicitly, using its message

passing technique. In other words, we observe that, in this case, the introduced knowledge

happens to be redundant with GNNs. However, the introduced knowledge significantly

improves the accuracy of MLPs. In this context, we discuss perspectives for future work

in Section 6.3.

97

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

6.2.6. Robustness to Incorrect Knowledge

Another question of interest is how the knowledge enhancedmodel finds a balance between

knowledge and graph data when they are inconsistent. In other words, can the KeGNN

successfully deal with nodes having mainly neighbours that belong to a different ground

truth class and thus introduce misleading information to the node classification?

To analyse this question, we categorize the accuracy by the proportion of misleading nodes

in the neighbourhood, see Figure 6.4. Misleading nodes are the nodes in the neighborhood

of a node that have a different ground truth class than the node to be classified. It turns out

that KeMLP is particularly helpful compared to MLP when the neighbourhood provides

correct information. However, if the neighbourhood is misleading (if most or even all of

the neighbours belong to a different class), an MLP that ignores the graph structure can

lead to even better results. When comparing KeGCN and GCN, there is no clear difference.

This is expected, since both models are equally affected by misleading nodes as they rely

on the graph structure. Just as a GCN, the KeGCN is not necessarily robust to wrong

prior knowledge since the GCN component uses the entire neighbourhood, including the

misleading nodes.

When comparing GCN to KeMLP, see Figure 6.4 (below), KeMLP is more robust to mislead-

ing neighbours. While GCN takes the graph structure as given and includes all neighbours

equally in the embeddings by graph convolution, the clause weights in the knowledge

enhancement layers provide a way to reduce the importance of the prior knowledge. If the

data frequently contradicts a clause, the model has the capacity to reduce the respective

clause weight in the learning process and reduce its impact.

6.2.7. Clause Weight Learning

Furthermore, we want to examine whether the clause weights learned during training

are aligned with the knowledge in the ground truth data. The clause weights provide

insights on the magnitude of the refinements made by a clause. The clause compliance [48]
measures how well the prior knowledge is satisfied in a graph.

Definition 6.2.1 (Clause Compliance). Given a graph G = (N, E,X,Y) and a clause 𝜙 in
first-order logic, the clause compliance is

Compliance(G, 𝜙) =
∑
𝑣∈Vi

∑
𝑢∈N(𝑣) I[if 𝑢 ∈ Vi]∑
𝑣∈Vi |N(𝑣) |

,

where N(𝑣) is the first-order neighbourhood of a node 𝑣 ∈ V, 𝑖 is a class in {1, . . . , 𝑐} and
V𝑖 ⊂ V is the subset of nodes that have the ground truth label of class 𝑖 : Vi = {𝑣 ∈ V | y(𝑣) =
𝑖}.

98

6.2. Experimental Evaluation

0% <25% <50% <75% <100% 100%
Percentage

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

Ac
cu

ra
cy

GCN
KeGCN

0% <25% <50% <75% <100% 100%
Percentage

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

MLP
KeMLP

0% <25% <50% <75%<100% 100%
Percentage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

GCN
KeMLP

Figure 6.4.: The accuracy grouped by the ratio of misleading first-order neighbours for

GCN vs. KeGCN (left), MLP vs. KeMLP (right), GCN vs. KeMLP (below) on

the Citeseer dataset.

0.2 0.4 0.6 0.8 1.0
Learned Clause Weight

0.2

0.3

0.4

0.5

0.6

C
la

us
e

C
om

pl
ia

nc
e

KeMLP

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Learned Clause Weight

0.2

0.3

0.4

0.5

0.6

0.7

C
la

us
e

C
om

pl
ia

nc
e

KeGCN

Figure 6.5.: The learned clause weights vs. clause compliance for KeMLP (left) and KeGCN

(right) on the Citeseer dataset.

99

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

0 5 10 15 20 25 30 35
Epoch

0.6

0.7

0.8

0.9

Co
m

pl
ia

nc
e

Evolution of compliance

forall xy: not Cls 0(x) or not Cite(x,y) or Cls0(y)
forall xy: not Cls 1(x) or not Cite(x,y) or Cls1(y)
forall xy: not Cls 2(x) or not Cite(x,y) or Cls2(y)
forall xy: not Cls 3(x) or not Cite(x,y) or Cls3(y)
forall xy: not Cls 4(x) or not Cite(x,y) or Cls4(y)
forall xy: not Cls 5(x) or not Cite(x,y) or Cls5(y)

-- = base NN, line = after enhancement

0 5 10 15 20 25
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
m

pl
ia

nc
e

Evolution of compliance

forall xy: not Cls 0(x) or not Cite(x,y) or Cls0(y)
forall xy: not Cls 1(x) or not Cite(x,y) or Cls1(y)
forall xy: not Cls 2(x) or not Cite(x,y) or Cls2(y)
forall xy: not Cls 3(x) or not Cite(x,y) or Cls3(y)
forall xy: not Cls 4(x) or not Cite(x,y) or Cls4(y)
forall xy: not Cls 5(x) or not Cite(x,y) or Cls5(y)

-- = base NN, line = after enhancement

Figure 6.6.: The clause compliance during training for GCN vs. KeGCN (left) and MLP vs.

KeMLP (right) on the Citeseer dataset.

In other words, the clause compliance counts how often among nodes of a class Clsi the

neighbouring nodes have the same class. The clause compliance is calculated on the

ground truth classes of the training set or the predicted classes. As a reference, we measure

the clause compliance based on the ground truth labels in the training set. Figure 6.5

displays the learned clause weights for KeGCN and KeMLP versus the clause compliance

on the ground truth labels of the training set. For KeMLP, a positive correlation between

the learned clause weights and the clause compliance on the training set is observed. This

indicates that higher clause weights are learned for clauses that are satisfied in the training

set. Consequently, these clauses have a higher impact on the refinements of the predictions.

In addition, the clause weights corresponding to clauses with low compliance values make

smaller refinements to the initial predictions. Accordingly, clauses that are rarely satisfied

learn lower clause weights during the training process. In the case of KeGCN, the clause

weights are predominantly set to values close to zero. This is in accordance with the

absence of a significant performance gap between GCN and KeGCN. Since the GCN

itself already leads to valid classifications, smaller refinements are required by the clause

enhancers.

Furthermore, we analyse how the compliance evolves during training to investigate

whether the models learn predictions that increase the satisfaction of the prior knowledge.

Figure 6.6 illustrates the evolution of the clause compliance for the six clauses for GCN vs.

KeGCN and MLP vs. KeMLP. It is observed that GCN and KeGCN yield similar results as

the evolution of the compliance during training for both models is mostly aligned. For

MLP vs. KeMLP the clause compliance of the prediction of the MLP converges to lower

values for all classes than the clause compliance obtained with the KeMLP. This provides

evidence that the knowledge enhancement layer actually improves the satisfiability of the

100

6.3. Limitations

prior knowledge. As already observed, this indicates that the standalone GCN is able to

implicitly learn to satisfy the prior knowledge even though it is not defined in a knowledge

enhancement layer.

6.3. Limitations

The method of KeGNN is limited in some aspects.

Homogeneous graph structure. Here, KeGNN is only applied to homogeneous graphs.

In reality, however, graphs are often heterogeneous with multiple node and edge types

[217]. Adaptations are necessary on both the neural and the symbolic side to apply KeGNN

to heterogeneous graphs. The restriction to homogeneous graphs also limits the scope

of formulating complex prior knowledge. Eventually, the datasets used in this work and

the set of prior knowledge are too simple for KeGNN to exploit its potential and lead to a

significant improvement over the GNN. The experimental results show that the knowledge

encoded in the symbolic component leads to significant improvement over an MLP which

is not capable to capture and learn with that knowledge. This suggests that for more

complex knowledge that is harder to encode in the message passing layers of a GNN,

KeGNN has the potential to bring greater improvements.

Closed world assumption. Another open question is how to support negation, namely

edges that do not exist between two nodes. The graph is assumed to be complete (closed
world assumption). An open question is how the method scales with large multi-relational

graphs and considering all negated links. In the specific case here, negated atoms¬Cite(𝑥,𝑦)
are neglected since the clauses of this form in the experiments are always true if no edge

between 𝑥 and 𝑦 exists. This situation is not obvious with any type of prior knowledge

with several different binary predicates. Furthermore, the closed world assumption is

not appropriate in many scenarios as graphs are incomplete and missing edges do not

necessary mean that a relation does not hold true.

Link prediction. Furthermore, limitations occur in the context of link prediction with

KeGNN. For link prediction, a neural component is required to predict fuzzy truth values

for binary predicates. At present, KeGNN handles clauses containing binary predicates.

However, their truth values are initialized with constant prediction values, where a high

value encodes the presence of an edge. This limits the application of KeGNN to datasets

for which the graph structure is complete and known a priori.

Small scale. So far, KeGNN and KENN [46] have only been applied to rather small graphs

that are magnitudes smaller than graphs often found in the real-world. The scalability of

the knowledge enhancement layers in KeGNN to large graphs remains an open question,

which will be addressed in the next sections.

101

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

6.4. Conclusion and Outlook

In this work, we introduced KeGNN, a neuro-symbolic model that integrates GNNs with

symbolic knowledge enhancement layers to create an end-to-end differentiable model.

This allows the use of prior knowledge to improve node classification, while exploiting

the strength of a GNN to learn expressive representations. Experimental studies show that

incorporating prior knowledge has the potential to improve simple neural models such

as MLPs. However, knowledge enhancement of GNNs is more difficult to achieve on the

underlying and limited benchmarks, where the injection of simple knowledge about local

neighbourhood is redundant with the representations that GNNs are able to learn.

With respect to the neuro-symbolic desiderata formulated in Section 4.1, KeGNN is

knowledge-aware because it allows the incorporation of first-order logic clauses in the

form of differentiable knowledge enhancement layers. The incorporation of more complex

knowledge, such as existential quantification or conjunction, is still an open question.

Thanks to the use of knowledge and the use of the base neural network, KeGNN is robust

to noise in the data and also to prior knowledge that is not fully satisfiable in a logical

sense. Regarding interpretability, clause weights provide a way to make the impact of

knowledge on predictions more quantifiable. In terms of scalability, the application to

large graphs with numerous negated atoms is an open question. There are also limitations

with respect to the closed-world assumption and the focus only on node classification and

homogeneous graphs. Nevertheless, KeGNN has the potential not only to improve graph

completion tasks from a performance perspective, but also to improve interpretability

through clause weights. This work is a step towards a holistic neuro-symbolic method on

incomplete and noisy semantic data, such as knowledge graphs.

102

7. Knowledge Enhancement on Large
Graphs

The KeGNN [207] method presented in Section 6 integrates prior knowledge in the form

of logical clauses into a neural network by adding knowledge enhancement layers to

the network architecture. Previous results show that the knowledge enhanced models

outperform pure neural models on small graphs [136, 46]. However, the used benchmark

graphs are unsatisfactory in terms of quality (homogeneous) and quantity (small size)

[93, 182] and are therefore unsuitable for testing complex models. Consequently, the

applicability of knowledge enhancement layers to large graphs with a high number of

nodes and edges is still an open question.

This chapter focuses on the scalability of the concept of knowledge enhancement layers in

the context of graphs and addresses two important obstacles. First, classic deep learning

approaches commonly use mini-batch stochastic gradient descent (SGD) in the training

phase. By splitting the dataset into smaller batches, memory utilisation can be reduced,

which is particularly important on memory-constrained GPUs. However, the application

of standard mini-batch SGD to is not well suited for graphs, because nodes are connected

by edges and are consequently not independent. Therefore, the partitioning into batches

must ensure that the relevant information in the form of node neighbourhood is available

in every batch. Second, the problem of neighbourhood explosion [138, 59] can occur

when stacking multiple knowledge enhancement layers with binary clauses. The number

of nodes required for the computations in the knowledge enhancement layers grows

exponentially with respect to the number of layers. This can lead to a drastic increase in

memory usage during training on GPUs, to the point of infeasibility.

To address these issues, we propose a graph-specific mini-batching strategy called Re-
strictive Neighbourhood Sampling to make knowledge enhancement applicable to large

graphs. The methods KENN [46] and KeGNN are tested on two datasets for node classifi-

cation from the Open Graph Benchmark (OGB) [93], namely ogbn-arxiv and ogbn-products.
OGB [93] is a collection of diverse datasets that provides large and informative graphs

for benchmarking complex models. The experiments show that the proposed Restricted

Neighbourhood Sampling technique makes the knowledge enhancement on large graphs

feasible.

103

7. Knowledge Enhancement on Large Graphs

7.1. Problem Statement for Knowledge Enhancement on
Large Graphs

This section elaborates on the problem of how the number of knowledge enhancement

layers and the arity of the predicates in the logical language affect thememory requirements.

Recall the concepts and notations of knowledge enhancement in Section 6.1.4.

7.1.1. Memory Requirements of a Knowledge Enhancement Layer

For a knowledge enhancement layer that enhances only unary clauses, the clause weights

and the matrix with the unary groundings have to be stored. This results in memory

requirements that increase linearly with the number of nodes 𝑛 in the graph.

For graph data, the changes applied to a grounded predicate depend not only on the

grounding of one variable, but also on the groundings of the two variables that are linked
by binary predicates. In other words, not only the representation of a node itself from

the previous layer is required, but also the representation of the nodes to which the node

is connected by an edge, namely the first-order neighbourhood N1(𝑣) of a node 𝑣 . To

increase readibility, the notation is simplified to N1 from here on. Consequently, the unary

predicates of the connected nodes must be encoded in a single representation. Therefore,

the knowledge enhancement layers for binary clauses consist of a join operation that

merges binary predicates and the binarised unary predicates into a single matrix M, as

shown in the Examples 6.1.6 and 6.1.7 of Chapter 6. After joining binarised unary and

binary predicates,M looks as follows:

M =


(𝑣1,𝑣1) 𝑃𝑥

𝑈1

(𝑣1) . . . 𝑃𝑥
𝑈𝑝
(𝑣1) 𝑃

𝑦

𝑈1

(𝑣1) . . . 𝑃
𝑦

𝑈𝑝
(𝑣1) 𝑃𝐵1

(𝑣1, 𝑣1) . . . 𝑃𝐵𝑞
(𝑣1, 𝑣1)

(𝑣1,𝑣2) 𝑃𝑥
𝑈1

(𝑣1) . . . 𝑃𝑥
𝑈𝑝
(𝑣1) 𝑃

𝑦

𝑈1

(𝑣2) . . . 𝑃
𝑦

𝑈𝑝
(𝑣2) 𝑃𝐵1

(𝑣1, 𝑣2) . . . 𝑃𝐵𝑞
(𝑣1, 𝑣2)

...
. . .

. . .
. . .

(𝑣𝑛,𝑣𝑛) 𝑃𝑥
𝑈1

(𝑣𝑛) . . . 𝑃𝑥
𝑈𝑝
(𝑣𝑛) 𝑃

𝑦

𝑈1

(𝑣𝑛) . . . 𝑃
𝑦

𝑈𝑝
(𝑣𝑛) 𝑃𝐵1

(𝑣𝑛, 𝑣𝑛) . . . 𝑃𝐵𝑞
(𝑣𝑛, 𝑣𝑛)



unary groundings P𝑥
𝑈︷ ︸︸ ︷ unary groundings P𝑦

𝑈︷ ︸︸ ︷ binary groundings P𝑥𝑦

𝐵︷ ︸︸ ︷
. (7.1)

The number of columns depends on the number of unary predicates 𝑝 and binary predicates

𝑞 and results in 2·𝑝+𝑞. The number of rows corresponds to the number of all possible binary

combinations of nodes in the graph that equals 𝑛2. This representation allows to encode

all possible groundings of the binary predicates. Under the closed world assumption,

nodes that are not connected by an edge are considered as negative grounded atoms.

In consequence, the shape of M is R𝑛
2×(2𝑝+𝑞)

. This leads to memory requirements that

increase quadratically with respect to the number of nodes in the graph (O(𝑛2)).

Depending on the shape of the clauses in the prior knowledge, the number of rows can be

reduced. The clauses used in Chapter 6, for example, have the form¬𝐴(𝑥)∨¬𝐵(𝑥,𝑦)∨𝐶 (𝑦)
with only negated binary grounded atoms. Since this example assumes that the groundings

of the binary atoms are deterministic, any pair of two nodes between which no edge is

104

7.1. Problem Statement for Knowledge Enhancement on Large Graphs

1nd layer

2rd layer

𝐿-th layer

N0

N1

N2

N𝐿

.

Figure 7.1.: Illustration of neighbourhood explosion.

observed is interpreted as a negative grounded binary predicate. Thus, from a logic point

of view, the clause is already satisfied for any grounding of the other predicates. Hence,

the negative binary grounded atoms are be neglected in this case. This reduces the number

of rows inM from 𝑛2 to𝑚, where𝑚 is the number of edges in the graph.

7.1.2. Multiple Knowledge Enhancement Layers

The number of knowledge enhancement layers stacked impacts the memory requirements

of the whole knowledge enhanced model. When stacking multiple knowledge enhance-

ment layers with binary clauses, the refinements recursively depend on the results of the

previous layer. By stacking 𝐿 binary knowledge enhancement layers, the 𝐿-th neighbour-

hood N𝐿 is used to calculate the refinements of a grounded atom that occurs in the binary

clause.

The memory requirements depend not only on the number of layers and nodes in the

graph, but also on the connectivity of the graph, which is indicated by the node degree.

The number of nodes to be stored in the memory increases exponentially with respect to 𝐿,

see Figure 7.1). In the worst case, the required neighbourhood N𝐿 results in the complete

graph. The exponential growth of the relevant nodes with the number of layers is referred

to as neighbourhood explosion [62]. It is a well-known problem in the graph neural network

domain.

Example 7.1.1 (Multiple Knowledge Enhancement Layers with Binary Clauses).
Here, two knowledge enhancement layers are stacked, supporting the binary clause

𝜙 : ∀𝑥𝑦 : ¬𝐴𝐼 (𝑥) ∨¬𝐶𝑖𝑡𝑒 (𝑥,𝑦) ∨𝐴𝐼 (𝑦). The following example graph is considered where

nodes represent scientific publications edges denote citations.

a b c

105

7. Knowledge Enhancement on Large Graphs

We illustrate now the refinements that are applied to the atom 𝐴𝐼 (𝑎) by the clause 𝜙 . The

refined prediction Y′[𝑎,𝐴𝐼] for the atom 𝐴𝐼 (𝑎) by the first knowledge enhancement layer

with clause weight𝑤
(1)
𝜙

is calculated as follows:

Y′[𝑎,𝐴𝐼] = 𝜎

(
Z[𝑎,𝐴𝐼] +𝑤 (1)𝜙 ·

𝑒Z[𝑎,𝐴𝐼]

𝑒−Z[𝑎,𝐴𝐼] + 𝑒−Z𝐶𝑖𝑡𝑒 [𝑎,𝑏] + 𝑒Z[𝑏,𝐴𝐼]︸ ︷︷ ︸
=refinements by 1st layer︸ ︷︷ ︸

Z′[𝑎,𝐴𝐼]

)

It is evident that the enhancement of a binary clause aggregates not only grounded

predicates referring to the constant 𝑎, but also grounded predicates for node 𝑎’s first-order

neighbours in the graph, namely Z[𝑏,𝐴𝐼] .

Stacking a second knowledge enhancement layer with clause weight𝑤
(2)
𝜙

results in the

following computation:

Y′′[𝑎,𝐴𝐼] = 𝜎

(
Z′[𝑎,𝐴𝐼] +𝑤

(2)
𝜙
· 𝑒Z

′
[𝑎,𝐴𝐼]

𝑒−Z
′ [𝑎,𝐴𝐼] + 𝑒−Z′𝐶𝑖𝑡𝑒 [𝑎,𝑏] + 𝑒Z′ [𝑏,𝐴𝐼]︸ ︷︷ ︸
=refinements by 2nd layer

)
=

𝜎

(
Z′[𝑎,𝐴𝐼] +𝑤

(2)
𝜙
· 𝑒

(
Z[𝑎,𝐴𝐼]+𝑤 (1)𝜙

· 𝑒
Z[𝑎,𝐴𝐼]

𝑒
−Z[𝑎,𝐴𝐼] +𝑒−Z𝐶𝑖𝑡𝑒 [𝑎,𝑏] +𝑒Z[𝑏,𝐴𝐼]

)
𝑒−Z

′ [𝑎,𝐴𝐼] + 𝑒−Z′𝐶𝑖𝑡𝑒 [𝑎,𝑏] + 𝑒

(
Z[𝑏,𝐴𝐼]+𝑤 (1)𝜙

· 𝑒
Z[𝑏,𝐴𝐼]

𝑒
−Z[𝑏,𝐴𝐼] +𝑒−Z𝐶𝑖𝑡𝑒 [𝑏,𝑐] +𝑒Z[𝑐,𝐴𝐼]

)
︸ ︷︷ ︸

=refinements by 2nd Knowledge Enhancer

)
.

As we can see, the refinement of Z′′[𝑎,𝐴𝐼] in the second layer depends on the grounded

predicates of the second-order neighbours of node 𝑎, namely node 𝑐 and node 𝑑 .

7.2. Mini-batch Gradient Descent on Graphs

Traditional deep learning approaches often use mini-batch gradient descent to train neural

networks on memory-constrained GPUs [127]. The dataset is divided into disjoint subsets,

which are called mini-batches of size 𝑏. The network parameters are updated after each

forward pass of a mini-batch through the neural network. This does not only lead to

favorable properties such as more stable convergence and generalization, but also reduces

the memory requirements, since batches can be processed independently of each other in

parallel.

106

7.2. Mini-batch Gradient Descent on Graphs

V2

𝑣5

𝑣7

𝑣6

𝑣9

𝑣8V1

𝑣3

𝑣0

𝑣2

𝑣4

𝑣1

Figure 7.2.: The application of standard mini-batch gradient descent to graph data. The

inter-batch edges (drawn in dotted and red) are not simultaneously available.

However, dividing a dataset into mini-batches is less obvious for graph data. This originates

from the fact that the nodes in a graph are by design not independent. When splitting a

set of nodes V of a graph G into batches, neighbouring nodes may appear in different

batches and therefore not be available simultaneously. The following equation illustrates

the effect on the adjacency matrix A when splitting a graph into mini-batches of size 𝑏,

where 𝑏 ∈ {1, 2, . . . , 𝑛}.

A =



0 𝑏 𝑛−𝑏 𝑛

0 (𝑣0, 𝑣0) (𝑣0, 𝑣𝑏) (𝑣0, 𝑣𝑛−𝑏) (𝑣0, 𝑣𝑛)

𝑏 (𝑣𝑏, 𝑣0) (𝑣𝑏, 𝑣𝑏) (𝑣𝑏, 𝑣𝑛−𝑏) (𝑣𝑏, 𝑣𝑛)

𝑛−𝑏 (𝑣𝑛−𝑏, 𝑣0) (𝑣𝑛−𝑏, 𝑣𝑏) (𝑣𝑛−𝑏, 𝑣𝑏) (𝑣𝑛−𝑏, 𝑣𝑛)

𝑛 (𝑣𝑛, 𝑣0) (𝑣𝑛, 𝑣𝑏) (𝑣𝑛, 𝑣𝑛−𝑏) (𝑣𝑛, 𝑣𝑛)



(7.2)

The adjacency matrix A of the entire graph is divided into adjacency matrices per mini-
batch (marked in blue). The edges connecting nodes within a batch are called intra-batch
edges and the edges connecting nodes in different batches are called inter-batch edges. The
inter-batch edges are not simultaneously available and are consequently neglected during

training.

Example 7.2.1 (Mini-batching on graphs). Consider the example graph G = (V, E)
in Figure 7.2. The set of nodes V = {𝑣0, . . . , 𝑣9} is split into two disjoint subsets V1 =

{𝑣0, . . . , 𝑣4} and V2 = {𝑣5, . . . , 𝑣9}. The set of inter-batch edges {(𝑣1, 𝑣5), (𝑣2, 𝑣5), (𝑣1, 𝑣7),
(𝑣6, 𝑣1), (𝑣3, 𝑣6)} ⊂ E is neglected when applying standard mini-batching to the graph.

We define this information loss in form of inter-batch edges as a function of the batch size

and the number of nodes.

107

7. Knowledge Enhancement on Large Graphs

Definition 7.2.1 (Information Loss). Given a graph G = (V, E) with 𝑛 nodes, adjacency
matrix A and batch size 𝑏, the information loss 𝜉 (𝑏, 𝑛) is defined as 𝜉 (𝑏, 𝑛) = 𝑛2 − 𝑛

𝑏
· 𝑏2.

Here, 𝑛2 is the size of the adjacency matrix A, 𝑏2 is the size of each adjacency matrix per

batch and
𝑛
𝑏
is the number of batches. To simplify notations, we assume that 𝑛 mod 𝑏 = 0.

If the batch size converges to the full size of the graph, an information loss of zero is

obtained.

lim

𝑏→𝑛
𝜉 (𝑏, 𝑛) = 𝑛2 − 𝑛

𝑛
· 𝑛2 = 0. (7.3)

In contrast, the information loss increases when the batch size decreases.

lim

𝑏→1

𝜉 (𝑏, 𝑛) = 𝑛2 − 𝑛
1

· 1 = 𝑛2 − 1. (7.4)

7.3. Restrictive Neighbourhood Sampling

The goal is to balance information loss and complexity when dividing the graph into

batches. On the one hand, the batches must be small enough to fit into the memory. On

the other hand, a sufficient number of nodes and edges are requisite to approximate the

training on the full graph and minimize information loss.

To this end, we propose Restrictive Neighbourhood Sampling (RNS). The aim is to find a set

of batches in which many intra-batch edges are retained, while a few inter-batch edges

are neglected. To this end, RNS creates so-called batch graphs at the pre-processing stage

by sampling nodes from the neighbourhood. RNS proceeds by randomly sampling from

the set of nodes without replacement until all nodes are taken. This way, disjoint sets of

target nodes are obtained. Then, the samples of the 𝜏-order neighbourhoods of the nodes

are integrated. The number of neighbours to be sampled is constrained by the following

hyperparameters that can be chosen in accordance with the available memory capacity

and the topology of the graph:

• The batch size 𝑏 is the number of target nodes in each batch graph.

• The sampling depth 𝜏 , 𝜏 ∈ {1, . . . 𝐿}, is the depth of the neighbourhood taken into

account.

• The neighbour size 𝜌 , 𝜌 ∈ {1, . . . 𝑛} is the number of neighbours sampled per sampling

depth level.

The pseudocode of RNS is introduced in Algorithm 1. A graph node-attributed, labeled

graph G = (V, E,X𝑉 ,Y) is considered as input. For the sake of readability, the index of the

node features will be omitted in the following. In the first step 𝑗 = 1 of 𝑗 ∈ {1, . . . 𝜏}, initial
batch graphs are drawn randomly fromVwithout replacement, so that each node appears in

exactly one batch together with its feature vector and label: {(V1

1
,X1

1
,Y1

1
), . . . , (V1

𝑆
,X1

𝑆
,Y1

𝑆
)}.

With batch size 𝑏, the number of batch graphs is denoted as 𝑆 = ⌈𝑛
𝑏
⌉. These nodes V1

𝑖 are

called target nodes for the 𝑖-th batch graph. The last batch may contain less than 𝑏 nodes

if 𝑛 mod 𝑏 > 0. In the following iteration, 𝜌 first-order neighbours are sampled from the

108

7.3. Restrictive Neighbourhood Sampling

Algorithm 1 Restrictive Neighbourhood Sampling

Input
Graph G = (V, E,X,Y)
Parameters: batch size 𝑏, sampling depth 𝜏 , neighbour size 𝜌

Output
List of batch graphs: G1(V1, E1,X1,Y1), . . . ,G𝑆 (V𝑆 , E𝑆 ,X𝑆 ,Y𝑆)

1: 𝑆 ← ⌈𝑛
𝑏
⌉ ⊲ calculate the number of batches

2: V1

1
,V1

2
, . . . ,V1

𝑆
← randomly sample without replacement from V ⊲ create target node sets

3: for 𝑖 ∈ {1, . . . , 𝑆} do
4: for 𝑗 ∈ {1, . . . , 𝜏} do
5: N𝑗

𝑖
← randomly sample 𝜌 nodes from N1(V𝑗

𝑖
)

6: V𝑗+1
𝑖
← V𝑗

𝑖
∪ N𝑗

𝑖
⊲ add to the set

7: end for
8: end for

target nodes’ first-order neighbourhood N1(V1

𝑖) of the 𝑖-th batch graph and added to the

node set of the batch graph. Together, they form the updated node set V 𝑗+1
𝑖

for the 𝑖-th

batch graph of the next iteration 𝑗 + 1:

V 𝑗+1
𝑖

= V 𝑗
𝑖
∪ N1(V 𝑗𝑖) (7.5)

To obtain a sample of the second-order neighbours, the set of first-order neighbours is

traversed. For each node in the set of first-order neighbours, 𝜌 neighbours are sampled

and added. This procedure is repeated until the sampling depth 𝑗 = 𝜏 is reached. The edges

between the target nodes and all sampled neighbours are retained so that each batch graph

corresponds to a subgraph G 𝑗

𝑖
= (V 𝑗

𝑖
, E 𝑗

𝑖
,X 𝑗

𝑖
,Y 𝑗

𝑖
) with 𝑖 ∈ {1, . . . , 𝑆} in iteration 𝑗 . The

hyperparameters𝑏, 𝜏 and 𝜌 have to be chosen carefully. If𝑏 and 𝜌 are too large, the sampled

graph might still exceed the available memory resources and result in out-of-memory

errors during training.

In a forward pass of a knowledge enhanced neural network, the set of batch graphs is

handled sequentially, see Algorithm 2. Some nodes might appear in several batch graphs

as sampled neighbours. However, each node appears only in one batch graph as target

node. If a node contributed to the loss more than once, a bias is introduced. For this reason,

only the predictions of the target nodes contribute to the batch loss, while the predictions

for the neighbouring nodes are only involved in the refinement calculations.

As mentioned in Section 7.1.1 and in particular in Equation 7.1, the memory requirements

with full-batch training increase quadratically with the number of nodes in the graph. In

contrast, applying standard mini-batching regardless of the graph structure leads to the

loss of inter-batch edges, see Definition 7.2.1. RNS allows to constrain the problem with

the parameters 𝑏, 𝜌 and 𝜏 . RNS considers 𝑆 = ⌈𝑛
𝑏
⌉ batch graphs of size 𝑏 + 𝜏 · 𝜌 , which

constrains the memory requirements per batch with fixed parameters. The 𝑆 batch graphs

can be processed sequentially or in parallel.

109

7. Knowledge Enhancement on Large Graphs

Algorithm 2 Forward Pass with Batch Graphs Sampled with RNS

Input
Graph G = (V, E,X,Y)
Knowledge enhanced modelMΘ with a set of trainable parameters Θ
Loss function L

Output
Training loss per epoch 𝑙epoch

1: 𝑙_epoch← 0

2: G1,G2, . . . ,G𝑆 ← RNS(G, 𝜏, 𝑏, 𝜌) ⊲ create batch graphs with RNS in Algorithm 1.
3: for 𝑖 ∈ {1, . . . , 𝑆} do
4: Ŷ𝑖 ←MΘ(X𝑖 , E𝑖) ⊲ Predict classes for all nodes in the batch graph.
5: Ŷ← Ŷ[1:𝑏,·] ⊲ Take only predictions of target nodes
6: 𝑙𝑖 ← L(Ŷ,Y) ⊲ compute the batch loss
7: 𝑙epoch ← 𝑙epoch + 𝑙𝑖 ⊲ update the epoch loss
8: end for
9: return 𝑙epoch

l

a d

k

j

f

c

i

h

g
b

e

a ®𝑥𝑎 ®𝑦𝑎

b ®𝑥𝑏 ®𝑦𝑏
c ®𝑥𝑐 ®𝑦𝑐

d ®𝑥𝑑 ®𝑦𝑑

e ®𝑥𝑒 ®𝑦𝑒

f ®𝑥 𝑓 ®𝑦𝑓
g ®𝑥𝑔 ®𝑦𝑔

h ®𝑥ℎ ®𝑦ℎ

i ®𝑥𝑖 ®𝑦𝑖
j ®𝑥 𝑗 ®𝑦 𝑗

k ®𝑥𝑘 ®𝑦𝑘

l ®𝑥𝑙 ®𝑦𝑙

V1

1

V2

1

V3

1

Figure 7.3.: Illustration of Restrictive Neighbourhood Sampling in Example 7.3.1. Left: The
graph G with V = {𝑣𝑎, . . . , 𝑣𝑙 }. Right: the initial batch graphs of target nodes.

110

7.4. Experimental Evaluation

With RNS, the information loss from definition 7.2.1 is

𝜉𝑅𝑁𝑆 (𝑛,𝑏, 𝜏, 𝜌) = 𝑛2 −
𝑛

𝑏
· 𝑏2 − 𝜌 · 𝜏 (7.6)

with 𝜌, 𝜏 ≥ 0 where 𝜉𝑅𝑁𝑆 (𝑛,𝑏, 𝜏, 𝜌) ≤ 𝜉 (𝑛,𝑏). Increasing the parameters batch size,

sampling depth and neighbourhood size leads to a lower information loss, but to higher

memory requirements. The hyperparameters can be selected tailored to the application

depending on the available memory capacity, graph connectivity and size as well as the

number of knowledge enhancement layers.

Example 7.3.1 (Restrictive Neighbourhood Sampling). We consider a graph G with

𝑛 = 12 nodes V = {𝑣𝑎, 𝑣𝑏, 𝑣𝑐, . . . 𝑣𝑙 } as illustrated in Figure 7.3. The parameters are set

to 𝑏 = 4, 𝜏 = 2 and 𝜌 = 3. In the first iteration, the set of nodes is split into sets of

target nodes, which results in three batch graphs. Regarding the first batch graph for

𝑗 = 1, we have V1

1
= {𝑣𝑎, 𝑣𝑏, 𝑣𝑐, 𝑣𝑑} (line 1 of Algorithm 1). Then, for 𝜌 = 3 nodes are

randomly sampled from N1(𝑉 1

1
) = {𝑣𝑙 , 𝑣𝑑 , 𝑣𝑔, 𝑣𝑘 , 𝑣 𝑗 , 𝑣 𝑓 , 𝑣ℎ, }, which results for example in

N1

1
= {𝑣𝑑 , 𝑣𝑔, 𝑣 𝑓 } (line 4 of Algorithm 1). This set is appended to set of target nodes:

{𝑣𝑎, 𝑣𝑏, 𝑣𝑐, 𝑣𝑑} ∪ {𝑣𝑑 , 𝑣𝑔, 𝑣 𝑓 } = {𝑣𝑎, 𝑣𝑏, 𝑣𝑐, 𝑣𝑑 , 𝑣𝑔, 𝑣 𝑓 } = V2

1
(line 5). Then, in 𝑗 = 2, samples are

drawn from the first-order neighbourhood of the nodes in V2

1
. This procedure is repeated

for all three batch graphs, until 𝑗 = 2 is reached. The final subgraphs are returned.

7.4. Experimental Evaluation

To test knowledge enhancement on large graphs, KeGNN is evaluated in the context of

a multi-class node classification task on two benchmark datasets from the Open Graph

Benchmark (OGB) [93]. OGB is a publicly available collection of various graph datasets

for benchmarking. Further, we test whether the RNS technique is effective in mitigating

the neighbourhood explosion problem in the context of binary clauses on large graphs.

7.4.1. Datasets

In the experiments, the OGB datasets ogbn-arxiv and ogbn-products are used [93, 61].

They represent homogeneous, node-attributed and labelled graphs for node classification.

They exceed the size of the datasets used in the previous experiments with KeGNN, see

Chapter 6. The datasets are further characterised in Table 7.1.

ogbn-arxiv. Ogbn-arxiv [200] is a citation graph extracted from the scientific platform

Arxiv. Each node in the graph represents a research paper of the computer science domain.

Directed edges between nodes indicate citations. Each paper has a 128-dimensional feature

vector that is obtained with a word2vec [148] model from the text in the title and the

111

7. Knowledge Enhancement on Large Graphs

ogbn-products ogbn-arxiv
nodes 2.449.020 169.343

edges 61.859.140 1.166.243

classes 47 40

Feature dimension 100 128

Avg. node degree 50.5 13.7

Table 7.1.: Overview of the ogbn-arxiv and ogbn-products datasets. The symbol # stands

for the number of instances.

abstract. The documents in the graph belong to one of 40 classes. The dataset is split into

training, validation and test set based on the publication dates with ratio of 54/18/28.

ogbn-products. Ogbn-products is a co-purchasing network that contains products sold

on the platform Amazon [20]. The products are represented by nodes in the graph. Two

nodes are connected by an edge if the respective products are purchased together. The

dataset contains node features that are derived from the product descriptions and encoded

as bag-of-word vectors. The dataset is split into training, validation and test set according

to the sales rank with a ratio of 8/2/90. The task is to predict one of 47 product categories

per node.

7.4.2. Prior Knowledge

The prior knowledge for the knowledge enhancement layers is manually derived, as in

[46]. For ogbn-arxiv, the previous assumption that two documents belong to the same

class when they cite each other is encoded, resulting in 40 clauses of the form

∀𝑥∀𝑦 : ¬𝐶𝑙𝑎𝑠𝑠 (𝑥) ∨ ¬𝐶𝑖𝑡𝑒 (𝑥,𝑦) ∨𝐶𝑙𝑎𝑠𝑠 (𝑦). (7.7)

For ogbn-products, two products are supposed to belong to the same category if they are

purchased together, which results in 47 clauses of the form

∀𝑥∀𝑦 : ¬𝐶𝑙𝑎𝑠𝑠 (𝑥) ∨ ¬𝐶𝑜𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 (𝑥,𝑦) ∨𝐶𝑙𝑎𝑠𝑠 (𝑦). (7.8)

As in [46] and as already described above, the edges and binary predicates are assumed

to be known a priori and deterministic. For this reason, the preactivation of the binary

predicate Cite(x,y) or CoPurchased(x,y) are set to a high positive value. As mentioned

above, negative groundings of binary predicates, namely nodes that that are not connected

by an edge, are neglected. The clause weights are initialized with a constant value of 0.5.

7.4.3. Hyperparameters and Experiment Setting

As in Chapter 6, knowledge enhancement layers are stacked onto an MLP and a GCN

and the resulting models are designated KeMLP and KeGCN, respectively. The model

architecture for the GCN and MLP proposed in [93] is adapted. The MLP and GCN consist

112

7.4. Experimental Evaluation

ogbn-arxiv ogbn-products
avg test

accuracy

avg epoch

time

avg test

accuracy

avg epoch

time

MLP 0.5403 (0.0061) 0.065 OOM -

KeMLP 0.5713 (0.1063) 0.768 OOM -

GCN 0.5273 (0.019) 0.182 OOM -

KeGCN 0.4978 (0.0205) 0.888 OOM -

Table 7.2.: Results with full-batch training on ogbn-arxiv and ogbn-products. The average

test accuracies and average epoch times (in seconds) are shown. The standard

deviation is noted in brackets.

of three hidden layers with hidden dimension of 256, batch normalisation layers [101]

and ReLu activation after each hidden layer. For the MLP, the hidden layers are linear

layers [161] and for GCN graph convolutional layers [61]. Regarding the knowledge

enhanced models KeMLP and KeGCN, three knowledge enhancement layers with the

clauses in Section 7.4.2 are stacked. For all models, the logarithmic softmax function [161]

is employed as activation function in the last layer. The categorical cross entropy loss

function [161] is optimized during training. The full set of hyperparameters is listed in the

Appendix A.2.

In the experiments, the models MLP, GCN, KeMLP and KeGCN are compared. All four

models are trained and evaluated with full-batch training and RNS. Multiple independent

runs are conducted per experiment and the average mean accuracy 𝜇 is reported, as

recommended in [93]. The following one-sided Student t-tests are performed to test

whether the knowledge enhancedmodels outperform the baseline models MLP and GCN:

𝐻0 : 𝜇MLP ≥ 𝜇KE𝑀𝐿𝑃
, 𝐻1 : 𝜇MLP < 𝜇KE𝑀𝐿𝑃

. (7.9)

𝐻0 : 𝜇GCN ≥ 𝜇KE𝐺𝐶𝑁 , 𝐻1 : 𝜇GCN < 𝜇KE𝐺𝐶𝑁 .

7.4.4. Implementation

The implementation of RNS and the experiments are publicly available on GitLab
1
. We

use PyTorch [161] and modules from the graph learning library PyTorch Geometric [61].

The Weights and Biases application [22] is used to monitor the experiments.

7.4.5. Results

Full-batch Training. The results with full-batch training for ogbn-arxiv and ogbn-

products are presented in Table 7.2. While the full-batch training on ogbn-arxiv is feasible

for all models, full-batch training on ogbn-products results in an out-of-memory error for

1https://gitlab.inria.fr/tyrex/scalable_ke

at Hash 99c114a43ad625ada9e4cb5326588022579b1a53.

113

https://gitlab.inria.fr/tyrex/scalable_ke

7. Knowledge Enhancement on Large Graphs

RNS on ogbn-arxiv RNS on ogbn-products
avg test

accuracy

avg epoch

time

avg test

accuracy

avg epoch

time

MLP 0.5206 (0.0314) 0.09 0.5970 (0.0039) 4.17

KeMLP 0.5701 (0.0067) 2.77 0.6416 (0.0029) 6.50

GCN 0.5473 (0.0071) 1.02 0.7224 (0.0051) 4.13

KeGCN 0.5373 (0.0242) 2.94 0.7144 (0.0041) 6.78

Table 7.3.: Results with RNS training on ogbn-arxiv and ogbn-products. The average

test accuracies and average epoch time are shown in seconds. The standard

deviation is noted in brackets.

all experiments, as also reported in [62]. For ogbn-arxiv, KeMLP significantly outperforms

the MLP, reporting a p-value of 7.21𝑒−17 that is smaller than the significance threshold of

0.05. In case of KeGCN, no significant improvement is found with a p-value of 0.2277. It is

shown that the knowledge enhanced models KeMLP and KeGCN have higher runtimes

compared to the baselines. These observations are consistent with the results obtained

in Chapter 6, where a significant improvement is achieved with KeMLP, but not with

KeGCN.

RNS Training. The results with RNS training are displayed in Table 7.3. The models

for ogbn-products can now be trained successfully without out-of-memory errors. For

both datasets, KeMLP significantly outperforms the MLP. For KeGCN, no improvement

compared to the GCN is significant. It can also be observed that the test accuracies

reported for training with RNS on ogbn-arxiv are superior to the test accuracies for full-

batch training. This comparison cannot be made for ogbn-products, as no results were

obtained from full-batch training.

Overall, our results in this chapter confirm the results obtained by [46] on the Citeseer

dataset with KeMLP and the results in Chapter 6. The KeMLP outperforms the MLP, but

the KeGCN does not outperform the GCN. As already detailed in Section 6.2.4, several

hypotheses support this observation. The GCN can handle relational information and is

therefore a more complex model than the MLP, which relies only on node features. As a

result, a GCN’s knowledge gain is expected to be less than that of an MLP. Furthermore,

each knowledge enhancement layer introduces clause weight parameters. In the case of

ogbn-arxiv, there are 40 clauses to be satisfied. With three knowledge enhancement layers

this leads to 120 additional training parameters. This might lead to overfitting. The prior

knowledge in these experiments handcrafted based on an assumption concerning the

relationship between document class and citations. If this relationship is not present in the

dataset, the knowledge enhancement layer might introduce additional noise. In order to

better investigate the conjunction of graph neural networks with knowledge enhancement

layers, further experiments with different sets of logic formulae and other datasets are a

future work.

Similar observations as in Chapter 6 are now obtained at scale. Although no significant

prediction improvement has yet been observed, the RNS training technique is effective

in making knowledge enhancement training feasible on memory-constrained GPUs. It

114

7.5. Limitations and Perspectives

is therefore a step towards more extensive experimentation and advancement of neuro-

symbolic techniques.

7.5. Limitations and Perspectives

While this chapter proposes solutions for knowledge enhancement at scale, the aforemen-

tioned limitations of KeGNN remain. These include the applicability to heterogeneous

graphs, the consideration of links under the open-world assumption and the adaptabil-

ity to link prediction. A line of future work is the application of knowledge enhanced

neural networks to heterogeneous graphs. An appropriate benchmark compromising

node features is the Wikilumni dataset [2]. Another line of future work is to improve

the scalability of the implementation of knowledge-based neural networks, for example

through parallelization techniques.

RNS is also limited in some aspects. Firstly, the reduction method of the neighbourhood is

done once at pre-processing stage. An extension would be to re-sample the batch graphs

at every epoch [80, 221]. Sampling per epoch would increase the coverage and is likely to

introduce neighbours that were not sampled at the epoch before. Furthermore, clustering

methods [37] may be useful to find a trade-off between batch size and information loss.

The appropriate choice of RNS parameters based on experimental findings is still an open

question.

7.6. Conclusion

This chapter investigated how knowledge enhancement with binary clauses can be applied

to large graphs. First, the memory requirements of knowledge enhancement layers with

binary clauses on graphs was analysed. It was shown that the problem of neighbourhood

explosion can occur when multiple knowledge enhancement layers are used. To alleviate

this problem, RNSwas introduced, whichmakes it possible to control the space requirement

using parameters.

To test whether RNS is effective, knowledge enhancement was applied to a GCN and an

MLP, which were tested on the benchmark datasets ogbn-arxiv and obgn-products The

KeMLP outperforms an MLP significantly, while no significant improvements is achieved

for the GCN. These results are aligned with the results reported in Chapter 6.

Even though no significant prediction improvement has been observed yet, the RNS train-

ing technique is shown to be effective in rendering the training of knowledge enhancement

with binary clauses feasible on memory-constrained GPUs. Furthermore, to the best of our

knowledge, this is the first application of knowledge enhancement layers to a large-scale

benchmark from the graph neural network domain. It is therefore an important step

towards addressing scalability aspects in neuro-symbolic AI and enabling applications on

real-world use cases.

115

7. Knowledge Enhancement on Large Graphs

Regarding the neuro-symbolic desiderata, the points discussed in Section 6.4 are still

relevant. However, this chapter was dedicated to the topic of scalability in the context

of knowledge enhanced neural networks on graphs. While full-batch KeGNN training is

not applicable on memory-constrained GPUs, it can be applied to large graphs by using

sampling methods such as RNS.

116

8. RuleKGE: Learning Rule-Injected
Knowledge Graph Embeddings on
Incomplete Knowledge Graphs

As explained in Chapter 1.1.2, knowledge graphs are a rich source of information that

has recently received a lot of attention from research and industry. Knowledge graph

embeddings represent the entities and relations of a knowledge graph in the vector space

with the intention of capturing its regularities geometrically. However, their training and

evaluation process is subject to some major limitations. First, the informative value of the

embedding vectors depends on the one hand on the expressiveness and inductive capacity

of the chosen knowledge graph embedding method, but also on the quality of the training

data. Patterns that are not observed in the data during training may fail to be captured in

the model and may not be retained during inference. Furthermore, many state-of-the-art

knowledge graph embedding methods fail to capture common inference patterns [3].

Another challenge is the creation of negative examples. Knowledge graphs only store

positive facts that are known to be true. However, in order to identify negative facts and

avoid overgeneralisation to the positive facts, negative facts need to be included in the

training. At the same time, knowledge graphs are often incomplete. This can happen

unintentionally due to flaws in graph extraction. For performance reasons, many implicit

facts are not explicitly stored because they can be inferred from other facts and would

therefore be redundant. Hence, knowledge graph embeddings are typically trained under

the local closed world assumption. In the state-of-the-art, negative facts are randomly

generated by corrupting the head or tail of facts. Therefore, the entity is replaced by another

entity in the knowledge graph [26]. On the one hand, this procedure likely generates facts

that obviously negative but meaningless, e.g. (Paris, capitalOf, AngelaMerkel). This

runs the risk of overfitting to trivial cases. On the other hand, a risk of sampling false

negatives remains. In other words, negative facts may be generated that are actually true

but are not included in the set of positive facts due to the incompleteness of the graph.

Most knowledge graph embedding methods focus solely on the facts. Moreover, the

general knowledge about the facts from the ontology is often neglected by knowledge

graph embedding methods. However, ontologies can be of great benefit to make embedding

training more efficient and qualitatively better, especially with incomplete and noisy data.

Neuro-symbolic methods are intended to unify the symbolic information in the ontology

with the numerical information in knowledge graph embeddings.

117

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

Neuro-symbolic methods such as KeGNN is not well suited for knowledge graphs. Firstly,

the dense representation of groundings is based on the closed world assumption. Since

knowledge graphs are often incomplete and large, this representation is inappropriate. In

dense adjacency matrix representations, every combination of entities has to be encoded,

which is not feasible for large graphs. In addition, interpreting unobserved facts as

incorrect facts can result in false negative facts for incomplete graphs. Furthermore, KeGNN

addresses the task of node classification. Its application to the task of link prediction has

not yet been studied. However, in knowledge graph research, link prediction is a task of

high importance, as it has many applications, e.g. in recommender systems, biological

networks or information retrieval.

In this chapter, the neuro-symbolic method called RuleKGE is presented for training

knowledge graph embeddingswith the support of rules. RuleKGE belongs to the category of

knowledge-driven graph augmentation approaches and the objective is to learn meaningful

embeddings on incomplete knowledge graphs while exploiting ontological knowledge.

To this end, a knowledge graph embedding model and a Datalog reasoner are combined.

The reasoner is used for positive reasoning and negative reasoning. In positive reasoning,

implicit facts are made explicit. In negative reasoning, rules are used to generate more

reliable negative facts. The aim is to improve the generation of negative facts through

reasoning, with two objectives: Firstly, to generate more meaningful negative facts, and

secondly, to reduce the risk of false negatives. The reasoning steps are performed per

batch graph in the training set, and the inferred positives and facts are iteratively added

to augment the explicit facts in the batch graph. In this way, knowledge in the form of

additional facts is introduced at the training stage. This allows the model to learn patterns

that can be useful at inference.

RuleKGE is evaluated through experiments on the Family dataset [120], which encodes

kinship relationships between entities. Experiments are conducted with different sets of

prior logic rules that are typically found in an ontology. These rule sets include for example

symmetry, inversion, composition and antisymmetry patterns. The experiments show that

RuleKGE achieves the goal of learning more meaningful knowledge graph embeddings

despite incomplete datasets and unseen relations.

8.1. Incomplete Knowledge Graphs

First, we formally define the incompleteness of a knowledge graph. Given a knowledge

graph K = (E,R,W) with finite sets of entities E and relations R, consider the closed
worldW ⊂ E × R × E with facts 𝑓 ∈ W. The total number of facts in the world is

𝑛 = |W| = |R | · |E |2. This is shown schematically in Figure 8.1.W consists of two disjoint

sets of positiveW+
and negativeW−

facts, so thatW =W+ ∪W−
andW+ ∩W− = ∅.

Consider that we observe a set of positive facts F + ⊂ W. We call them explicit positive facts.
Knowledge graphs typically do not explicitly denote negative facts. Various assumptions

can be made to categorise the remaining factsW\F + into positive and negative facts.

118

8.2. Method

W−

W+

F +

F −F ⊖

Figure 8.1.: Illustration of incomplete knowledge graphs.

The Closed World Assumption (CWA) assumes thatW+ = F +. Consequently, all facts
that are not in F + are assumed to be negative:W− = E × R × E\F +. Under the Local
Closed World Assumption (LCWA), only a subset of negative facts F − ⊂ W−

is considered,

since the number of facts inW−
is usually orders of magnitude larger than inW+

:

|W− | ≫ |W+ |. Under the Stochastic Local Closed World Assumption (SCLWA), the set of
negative facts T − is randomly sampled fromW− = E × R × E\F +. This is achieved by

randomly replacing the head or tail for a positive fact (ℎ, 𝑟, 𝑡) ∈ F + and replacing it with a

random entity ℎ′, 𝑡 ′ ∈ E to generate a negative fact (ℎ′, 𝑟 , 𝑡) or (ℎ, 𝑟, 𝑡 ′). This procedure is
called uniform negative sampling [9, 26].

In contrast, under the Open World Assumption (OWA), we assume that the remaining

facts are positive or negative, but we do not know to which set each fact belongs to:

W\F + =W+\F + ∪W−
, with disjointnessW+\F + ∪W− = ∅. The set of positive facts

that are not contained in the set of explicit positive factsW+\F + is referred to as implicit
positive facts. Under the Stochastic Open World Assumption the set of negative facts F − is
sampled whereby the facts might be false negative facts. In other words, the set of negative

facts F − consists of true negatives F − ∪W−
and false negatives: F ⊖ = F − ∪W+

.

8.2. Method

We propose RuleKGE, a neuro-symbolic method that combines a reasoning engine with

logical rules and a knowledge graph embedding method to learn embeddings for an

incomplete graph under the OWA. The aim is to reduce the bias introduced by false

negatives and incomplete positive facts, thereby improving the quality of the resulting

knowledge graph embedding and link predictions.

RuleKGE takes as input a set of positive facts and a set of rules specified in Datalog, see

Section 2.1. The rules are user-defined or originate from an ontology. They describe

patterns that the facts in the knowledge graph should respect. During training, a Datalog

119

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

program is instantiated given a subset of the explicit facts and the set of rules. By forward

chaining, a set of positive and negative facts are inferred with the rules forming an

augmented graph of positive and negative facts. This augmented graph is used in the

training of the knowledge graph embedding method and is the input to the loss function.

8.2.1. Reasoning Engine

The reasoning engine is based on a set of rules Σ and a set of facts F , which together

form a Datalog program. F [𝑟] = [(𝑒ℎ, 𝑒𝑡)0, . . . , (𝑒ℎ, 𝑒𝑡)𝑛] describes a set of 𝑛 facts under

the relation 𝑟 ∈ R with head and tail entities 𝑒ℎ, 𝑒𝑡 ∈ E. We consider the sets of positive
relations R+ and negative relations R−.

The set of positive facts F + [𝑟] is denoted as a joint set of facts under all positive relations

𝑟 ∈ R+:
F + [𝑟] =

⋃
𝑟∈R+
F [𝑟] . (8.1)

The set of negative facts F − [𝑟] is denoted as a joint set of facts under all negative relations
𝑟 ∈ R−:

F − [𝑟] =
⋃
𝑟∈R−
F [𝑟] . (8.2)

Rules encode semantics about the facts in a graph. While the positive facts in the graph

represent the grounded atoms in the program, the rules are predefined and formulate

knowledge about the facts in the domain.

Rules. The rules are formulated in the logical language L = {C,P,V}, which consists of

finite sets of constants C, variablesV and predicates P with arity in {1, 2}, namely unary

and binary predicates. Binary predicates 𝑃 (𝑥,𝑦) indicate relations between two variables

𝑥 and 𝑦. Unary predicates are denoted as 𝑃 (_, 𝑦) and 𝑃 (𝑥, _) and refer to the variable 𝑥

or 𝑦. The operators negation ¬, conjunction ∧, disjunction ∨ and implication← allow

to form logical expressions of predicates. The rules are formulated as Horn rules in L,
consisting of a head 𝜂 and a body 𝐵. The body 𝐵 contains a predicate or a conjunction of

predicates, while the head is a single atom. The rules are read from the right to the left as

"If-Then" rules. The variables that occur in the head must occur at in at least one atom

in the body. Further, we consider rules where the atoms in the body of the rule must not

contain a negative relation.

The rules are distinguished in positive and negative rules. A rule 𝜙+ with a head atom

with a positive relation 𝑟 ∈ R+ is called a positive rule:

𝜙+ : 𝜂 ← 𝛽. (8.3)

A finite set of positive rules is denoted as Σ+ = {𝜙+
0
, . . . , 𝜙+𝑛 }.

Example 8.2.1 (Positive Rules). Here, the set of positive rules Σ+ describes the patterns
composition and hierarchy between the relations parent, mother, father and sibling.

120

8.2. Method

1 % define relations

2 rel parent, mother, father, sibling

4 % define rules

5 parent(x,y) ← mother(x,y) or father(x,y)

6 sibling(y,z) ← parent(x,z) and parent(x,y)

In constrast, a rule with a head atom with a negative relation 𝑟 ∈ R− is called a negative
rule:

𝜙− : ¬𝜂 ← 𝛽. (8.4)

A finite set of negative rules is denoted as Σ− = {𝜙−
0
, . . . , 𝜙−𝑛 }.

Example 8.2.2 (Negative Rules). Here, the set of rules Σ− describes the patterns anti-
symmetry and mutual exclusion between the relations mother and father.

1 % define relations

2 rel mother, father

3 rel not_mother, not_father

5 % define rules

6 not_mother(x,y) ← mother(y,x)

7 not_father(x,y) ← father(y,x)

8 not_father(x,y) ← mother(y,x)

Facts. While rules are assumed to be provided, the explicit positive facts contained in the

graph are interpreted as grounded atoms in the logic program. The set of facts F + must

be consistent with the rules in Σ+. In other words, the facts added to the program have to

be a model of the rules. A batch graph B+ is a subset of explicit positive facts B+ ⊆ F + of
size 𝑏. Given L, the facts in B+ represent predicates grounded to constants. The set of

binary predicates in L is a subset of the relations R in the graph.

Given a set of rules, the facts are divided into extensional and intensional facts, depending
on the relation F + [𝑟] associated with them. An extensional relation is a relation that

occurs only in the body of the rules, while an intensional relation is a relation that occurs

in the head of a rule.

Example 8.2.3 (Positive Rules and Facts). The previous example on positive rules

is extended with the facts F + [mother] and F + [father] for the relations { mother, father }
⊂ R:

1 % define relations

2 rel parent, mother, father, sibling

4 % define rules

5 parent(x,y) ← mother(x,y) or father(x,y)

121

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

e

b

d

a

m
o
th
e
r m

o
th
e
r fa

th
e
rp

a
r
e
n
t

p
a
re
n
t

p
a
r
e
n
t

sibling

Figure 8.2.: Illustration of Example 8.2.4. The black arrows indicate the set of explicit

positive facts B+. In the first reasoning step, the implicit positive facts under

the relation parent (dashed, red) are inferred. In the second reasoning step, the

fact under the relation sibling (dashed, red) is inferred . All facts in the graph

form the set B+∗ when the fixpoint is reached.

6 sibling(y,z) ← parent(x,z) and parent(x,y)

8 % define facts

9 mother = [("b", "e"), ("b", "d")]

10 father = [("a", "d")]

8.2.2. Reasoning with Positive Rules

The evaluation of a rule 𝜙+ ∈ Σ+ on a set of facts B+ involves the following steps. First,
the body expression 𝐵 of the rule is evaluated. Second, the corresponding head atom 𝜂 is

inferred. Third, the inferred positive fact is concatenated with the explicit positive facts.

Thus, the reasoner implements a function from a set of explicit positive facts and the rules

to an updated set of positive facts containing explicit and implicit positive facts.

A fact 𝑓 ′ is an immediate consequence of Σ+ and B+ if 𝑓 ′ is in 𝐹+ [𝑟] for some extensional

relation 𝑟 ∈ R or if 𝑓 ′ ← 𝑓1, . . . , 𝑓𝑛 is an instantiation of a rule 𝜙 ∈ Σ+ and 𝑓1, ...𝑓𝑛 ∈ B+.
The function 𝑇 defines a set of immediate consequences B+𝑖+1 for the positive rules Σ+ and
explicit positive facts B+𝑖 :

𝑇 : Σ+,B+𝑖 ↦→ B+𝑖+1 (8.5)

For a batch graph of explicit positive facts B+, the output of 𝑇 (Σ+,B+) consists of all facts
𝑓 ∈ W+

that are immediate consequences ofB+ and Σ+. The operator𝑇 is monotone: B+ ⊆
𝑇 (B+). While new facts can be added, once inferred facts cannot be removed. The function

𝑇 can be applied several times to the set of facts: 𝑇 2(Σ+,B+) = 𝑇 (𝑇 (Σ+,B+)),𝑇 3(Σ+,B+) =
𝑇 (𝑇 (𝑇 (Σ+,B+))) and 𝑇𝑛 (Σ+,B+) = 𝑇 (. . .𝑇 (𝑇 (Σ+,B+))). It follows

B+ ⊆ 𝑇 (Σ+,B+) ⊆ 𝑇 2(Σ+,B+) ⊆ . . . ⊆ 𝑇𝑛 (Σ+,B+). (8.6)

122

8.2. Method

Starting from the explicit positive facts B+, this process is repeated until a fixpoint is
reached. A fixpoint is reached at step 𝑁 for all 𝐽 > 𝑁 if

𝑇𝑁 (Σ+,B+) = 𝑇 𝐽 (Σ+,B+). (8.7)

The least fixpoint operator lfp◦(𝑇) is defined as

lfp
◦(𝑇) = 𝑇 ◦ · · · ◦𝑇 = 𝑇𝑁 (8.8)

if there exists a minimum 𝑁 > 0 such that 𝑇𝑁 (B+) ◦= 𝑇𝑁+1(B+).

Overall, the function implemented by the positive reasoner is a least fixpoint operator:

lfp
⊕ (𝑇) : B+, Σ+ ↦→ B⊕ . (8.9)

The set of facts generated at the fixpoint is B⊕ = 𝑇𝑁 (Σ+,B+). The final fact set after

reasoning B⊕ is defined as the disjunction of the fact sets for all relations in the graph at

the fixpoint.

B⊕ =
⋃
∀𝑟∈R
F [𝑟]⊕ . (8.10)

The number of inferred implicit positive facts is Δ+ = |B⊕ | − |B+|.

Example 8.2.4 (Reasoning with Positive Rules and Facts). As illustrated in Fig-

ure 8.2, the rules Σ+ and the explicit positive facts B+ are used to infer implicit posi-

tive facts with the least fixpoint operator in Equation 8.12. The explicit positive facts

B+ = { mother = [("b", "e"), ("b", "d")], father = [("a", "d")] } are extensional facts
for rule 1. Therefore, in step 𝑛 = 1, the inferred facts { parent = [("b", "e"), ("b", "d"),

("a", "d")]} are added to the set of positive facts. In step𝑛 = 2, the facts {parent=[("b","e"),
("b", "d")]} are extensional facts for rule 2 and allow to infer {sibling = [("d", "e")]}.
A fixpoint is reached for 𝑛 = 2, since no more implicit facts are inferred by reapplying

the rules to the fact set. The set of facts B⊕ returned by the reasoner consists of all facts

derived at 𝑛 = 2.

1 % define relations

2 rel parent, mother, father, sibling

4 % define rules

5 parent(x,y) ← mother(x,y) or father(x,y) % rule 1

6 sibling(y,z) ← parent(x,z) and parent(x,y) % rule 2

8 % Initial facts

9 mother = [("b", "e"), ("b", "d")]

10 father = [("a", "d")]

11 sibling = [] % no facts for these relations

12 parent = []

14 % facts after step 1

15 mother = [("b", "e"), ("b", "d")]

123

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

16 father = [("a", "d")]

17 parent = [("b", "e"), ("b", "d"), ("a", "d")] % new facts

18 sibling = []

20 % facts after step 2

21 mother = [("b", "e"), ("b", "d")]

22 father = [("a", "d")]

23 parent = [("b", "e"), ("b", "d"), ("a", "d")]

24 sibling = [("d", "e")] % new facts

8.2.3. Reasoning with Negative Rules

While positive reasoning aims to augment the set of explicit positive facts by inferring

implicit positive facts, negative reasoning seeks to generate negative facts B− ⊆ F − given
a set of negative and positive rules Σ+, Σ− with Σ− ≠ ∅. Note that we restrict the set

negative facts B− to be intensional facts. This signifies that additional positive facts can

never be derived from negative facts and positive rules. First, a set of negative relations R−
is instantiated for each relation that occurs as the negated head in a negative rule:

R− = {𝑟 ∈ R|∃𝜙− ∈ Σ− : ¬𝑟 = ¬𝜂}

The set of facts under a negative relation 𝑟 ∈ R− are F − [𝑟]. In the program, these negated

relations are initialised in addition to the positive relations, as shown in the following

example.

Example 8.2.5 (Negative Rules). The set of rules Σ− describe the patterns antisymmetry

and mutual exclusion for the relation mother.

1 % define relations

2 rel mother, father

3 rel not_mother, not_father % negative relations

5 % define rules

6 not_mother(x,y) ← mother(y,x)

7 not_father(x,y) ← mother(y,x)

As for positive reasoning, positive facts can serve as extensional facts to derive intensional

facts. For negative rules, however, the intensional facts are negative, which modifies

function 𝑇 in Equation 8.5 to

𝑇 : Σ+, Σ−,B+𝑖 ↦→ B−𝑖+1. (8.11)

As in the case of positive reasoning, the operator𝑇 is repeatedly applied until a fixpoint 𝑁

is reached and no more negative facts can be derived. This results in the set of negative

facts B⊖.
lfp
⊖ (𝑇) : B+, Σ+, Σ− ↦→ B⊖ . (8.12)

124

8.2. Method

e

b

d

a

m
o
th
e
r m

o
th
e
r fa

th
e
r

n
o
t
m
o
th
e
r

n
o
t
m
o
th
e
r

not father
n
ot
fa
th
er

Figure 8.3.: Illustration of Example 8.2.6. Starting from the explicit positive facts, which

are indicated by black arrows, the facts with red dashed lines are inferred in

step 𝑛 = 1, where a fixpoint is reached. The negative facts B⊖ (red, dashed)
are returned.

The resulting set of negative facts B⊖ is defined as the disjunction of all sets of fact under

negative relations:

B⊖ =
⋃
∀𝑟∈R−

F − [𝑟]⊖ . (8.13)

The number of inferred negative facts is Δ− = |B⊖ |.

Example 8.2.6 (Negative Rules and Facts). The negative reasoning process is illus-

trated in the following example, see Figure 8.3. The set of explicit positive facts B+ ={
mother=[("b", "e"), ("b", "d")], father=[("a", "d")] } and the rules 1 and 2 are pro-

vided. They model the antisymmetry of the mother relation and the mutual exclusion

of the mother and father relation. The negative facts B⊖ ={ not mother = [("b", "e"),

("d", "b")], not father = [("b", "e"), ("b", "d")] } are inferred.

1 % define relations

2 rel mother, father, aunt

3 rel not_mother, not_father % negative relations

5 % define rules

6 not_mother(x,y) ← mother(y,x) %rule 1

7 not_father(x,y) ← mother(y,x) %rule 2

9 % define facts

10 mother=[("b", "e"), ("b", "d")]

11 father=[("a", "d")]

13 % facts after step one

14 not_mother = [("b", "e"), ("d", "b")]

15 not_father = [("b", "e"), ("b", "d")]

125

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

8.2.4. Training and Reasoning

First, recall how knowledge graph embeddings are trained without any reasoning, as

described in Section 3.1. Given a set of facts F +, the goal is to find representations

of entities and relations in the graph. They are usually parametrized with learnable

parameters Θ. The dimension of Θ and the exact way in which relations and entities are

modelled depend on the knowledge graph embedding method. In any case, the score

function calculates a plausibility score for a fact (𝑒ℎ, 𝑟 , 𝑒𝑡) ∈ E × R × E, which depends on

the set of learnable parameters Θ:

𝑓𝑠𝑐𝑜𝑟𝑒 : {(E × R × E),Θ} ↦→ R. (8.14)

Negative facts are usually generated by uniform negative sampling, which randomly

replaces the head or tail of the fact by another entity, see Equation 3.13. The ratio of the

number of positive facts to the number of negative facts is a hyperparameter 𝜌 ∈ R+ \ {0}.
It is usually set to one to produce an equal number of positive and negative facts. Then

the label one is assigned to positive facts and zero to negative facts. The goal is to learn Θ
to distinguish between positive and negative facts, which is a binary classification task.

Therefore, a differentiable loss function L is minimized. It measures the distance of the

score for the facts in the training set. The parameters Θ receive gradient updates
𝛿L
𝛿Θ

and represent the resulting embedding vectors for entities and relations. The training

is performed with mini-batch gradient descent. Therefore, F + is divided into 𝑆 batches

{B+
0
, . . . ,B+

𝑆
} of size 𝑏 with 𝑆 =

⌊
|F + |
𝑏

⌋
. In this notation, the last batch with less than 𝑏

facts is discarded. The loss and the parameters are updated per batch. The positive and

negative reasoning process in RuleKGE modifies the training loop. The architecture of

RuleKGE is shown in Figure 8.4. When a set of rules is provided, reasoning is applied to the

initial set of positive facts before the loss is calculated. The following sections explain how

positive and negative reasoning are incorporated into the process of training knowledge

graph embeddings, and how the two components are combined.

Positive Reasoning. The positive reasoning process is illustrated in the lines 4-8 of

Algorithm 3. Consider a batch of explicit positive facts B+𝑖 of size 𝑏, where 𝑖 ∈ [1, 𝑆]. For
the sake of readability, the index of the batch is omitted. The least fixpoint operator of

Equation 8.12 is used to derive B⊕, given the batch of explicit positive facts B+ and the

set of positive rules Σ+. Depending on the coverage of the rule heads in the batch, implicit

positive facts are inferred, increasing the batch size to |B⊕ | = 𝑏 + Δ+. Regarding the labels

of the facts, labels with value one are derived for the inferred implicit positive facts, since

they are logical consequences of B+ and Σ+. When only positive rules are provided, the

generation of the negative facts uses uniform negative sampling, see Section 3.13. However,

the number of negative facts to be generated is adjusted to
𝑏+Δ+
𝜌

.

Negative Reasoning. The negative reasoning process is described in the lines 9-17 of

Algorithm 3. Given a set of negative rules Σ− and a batch B+ of explicit positive facts,
negative reasoning aims to infer negative facts. The reasoner returns a set of negative

facts B⊖ of size Δ−. To keep the ratio of positive to negative facts 𝜌 , the size of B⊖

126

8.2. Method

B+ B⊕

B⊖
0

0

...

1

1

...

1

1

KGE

Θ

𝑓 (𝑡1)
𝑓 (𝑡2)
...
...

𝑓 (𝑡𝑛)

L

labels 𝑙𝑖facts scores 𝑓 (𝑡𝑖)

Gradient update
𝛿L
𝛿Θ

Positive

Reasoner

Σ+

Negative

Reasoner

Σ−

Figure 8.4.: Overview of the training loop of RuleKGEwith positive and negative reasoning.

may be too small or too large compared to the number of facts actually needed. If the

number of inferred negative facts is too small Δ− <
|B+ |
𝜌

additional negative facts are

generated with uniform negative sampling. The set of remaining facts {𝑓1, . . . , 𝑓𝑘} with
size 𝑘 =

⌊
|B+ |
𝜌
− Δ−

⌋
are randomly sampled from the set of negative facts:

𝑓1, . . . 𝑓𝑘 ∼ Uniform(N). (8.15)

Then, the sampled negative facts are combined with the inferred negative facts: B⊖ ∪
{𝑓1, . . . 𝑓𝑘}. If the negative reasoner generates too many negative facts (Δ− > |B+ |

𝜌
), facts

are sampled from the negative facts, where 𝑘 =

⌊
|B+ |
𝜌

⌋
:

𝑓1, . . . 𝑓𝑘 ∼ Uniform(B⊖). (8.16)

Positive and Negative Reasoning. Given a rule set of positive and negative rules

Σ = Σ+ ∪ Σ−, both positive and negative reasoning are used to infer implicit positive

facts and negative facts for training. The functions of positive and negative reasoning are

composed as follows:

lfp
⊖ ◦ lfp⊕ (𝑇) = lft

⊖ (Σ−, lfp⊕ (Σ+,B+)) . (8.17)

The first step is the positive reasoning. Then the negative sampling takes as input the set

of explicit and implicitly inferred positive facts B⊕. The number of negative facts required

is

⌊
|B⊕ |
𝜌

⌋
.

127

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

Algorithm 3 RuleKGE. Forward Pass with Reasoning

Input
Training facts F +, Positive Rules Σ+, Negative Rules Σ−
Parameters batch size 𝑏, ratio 𝜌 , knowledge graph embedding score function 𝑓 Θ

score
, set of parameters Θ

1: Split F + into 𝑛 batches B = {B+
1
, . . .B+𝑛 } of size 𝑏.

2: for B+ ∈ B do
3: Initialize DatalogReasoner(Σ+, Σ−)
4: if len(Σ+) > 0 then
5: B⊕ ← positive reasoning (B+, Σ+)
6: else


Positive reasoning

7: B⊕ ← B+
8: end if

9: if len(Σ−) > 0 then
10: B⊖ ← negative reasoning (B+, Σ−)

11: if len(B⊖) < len(B⊕)/𝜌 then
12: 𝑘 ←

⌊
𝑙𝑒𝑛 (B⊕)

𝜌
− Δ−

⌋
13: {𝑓1, . . . 𝑓𝑘 } ← uniform sampling k from N
14: B⊖ ← B⊖ ∪ {𝑓1, . . . 𝑓𝑘 }


Negative reasoning

15: else if len(B⊖) > len(B⊕)/𝜌 then
16: 𝑘 ←

⌊
𝑙𝑒𝑛 (B⊕)

𝜌

⌋
17: B⊖ ← uniform sampling k from B⊖
18: end if
19: else
20: B⊖ ← N ⊲ uniform negative sampling
21: end if
22: positive labels← {1}𝑙𝑒𝑛 (B⊕)
23: negative labels← {0}𝑙𝑒𝑛 (B⊖)
24: labels← concat[positive labels, negative labels]

25: facts← concat[B⊕,B⊖]
26: loss 𝑓 Θ

score
(facts, labels)

27: Θ← 𝛿Loss
𝛿Θ gradient update

28: end for

8.3. Experimental Evaluation

Experiments are conducted to address the following research questions:

R#1 How does the reasoning process in RuleKGE affect the batches of inferred facts?

R#2 Given incomplete data, does positive reasoning contribute to learning meaningful

embeddings of knowledge graphs?

R#3 Does negative reasoning contribute to learning meaningful embeddings of knowledge

graphs?

128

8.3. Experimental Evaluation

au
nt

bro
the

r
chi

ld

da
ug

hte
r
fat

he
r

hu
sba

nd

moth
er

ne
ph

ew
nie

ce
pa

ren
t

pa
rtn

er
sib

ling sis
ter son un

cle wife

Relations

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y

Frequency of Relations
train
test
valid

Figure 8.5.: The counts of facts in family dataset grouped by relation for train, valid and

test.

R#4 Does reasoning with intermediate concepts lead to more meaningful embeddings of

knowledge graphs?

R#5 Does RuleKGE allow to learn unseen zero-shot relations?

8.3.1. Dataset

In this chapter, we use the publicly available Family Dataset
1
[120]. The Family dataset is

a multi-relational, non-attributed graph. The facts encode kinship relationships between

individuals. The individuals represent the entities in the graph and the relations indicate

kinship relationships between them. For example, the fact "Person x is the aunt of person y"

is written as (x, aunt, y) or Aunt(x,y). The initial version of the dataset in [120] consists

of 12 different relations. We extend the dataset using the DLV tool [129] in order to have the

following set of 16 relations: aunt, uncle, mother, father, son, daughter, wife, husband,

niece, nephew, sister, brother, partner, parent, sibling, child. The frequency of the

relations in the train, valid and test set is shown in Figure 8.5 and Table 8.2. The dataset

contains the many-to-many relations aunt, brother, husband, nephew, niece, partner,

sibling, sister, uncle, wife, the one-to-many relations (father, mother), the many-to-

two relations child, daughter, son and the two-to-many relations (parent), see Table 8.2.

Overall, the graph contains 2,745 unique entities. The facts are divided into disjoint sets of

1
The version of the Family dataset used in this chapter is available here https://github.com/Glaciohound/

LERP.

129

https://github.com/Glaciohound/LERP
https://github.com/Glaciohound/LERP

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

Relation Train Valid Test
aunt 622 216 286

brother 633 220 321

child 765 266 370

daughter 325 113 173

father 412 143 219

husband 239 83 99

mother 352 122 184

nephew 757 263 341

niece 578 201 301

parent 764 265 403

partner 476 165 207

sibling 1.185 412 576

sister 552 192 255

son 440 153 197

uncle 721 250 351

wife 237 82 108

total 9,058 3,146 4,391

different tails # different heads characteristicmedian max median max
aunt 2 15 1 6 many-to-many

brother 2 9 1 7 many-to-many

child 1 2 1 7 many-to-two

daughter 1 2 1 6 many-to-two

father 1 11 1 1 one-to-many

husband 1 4 1 3 many-to-many

mother 1 7 1 1 one-to-many

nephew 2 9 2 8 many-to-many

niece 2 8 2 10 many-to-many

parent 1 11 1 2 two-to-many

partner 1 4 1 4 many-to-many

sibling 2 9 2 10 many-to-many

sister 2 8 1 6 many-to-many

son 1 2 1 5 many-to-two

uncle 2 17 1 16 many-to-many

wife 1 3 1 4 many-to-many

Table 8.2.: Left: Frequency of facts per relation in the train, valid and test set. Right:
Overview of the relations in the Family dataset.

train, valid and test facts as suggested in [81]. The training dataset contains 9,058 facts,

the validation set contains 3,246 facts and the test set contains 4,391 facts.

8.3.2. Rules

The rule sets used in the experiments are based on the inference patterns symmetry,

antisymmetry, inversion, composition, mutual exclusion and hierarchy as defined in the

Definitions 3.1.2 to 3.1.7 in Section 3.1.5. They are formulated in Datalog. Figure 8.6

shows the programs for positive reasoning and Figure 8.7 shows the programs for negative

reasoning.

For the experiments on the composition rule set, the original Family dataset with 12

relations is used. For all other experiments, the augmented family dataset with 16 relations

is used.

8.3.3. Implementation

The RuleKGE implementation is based on Python and PyTorch [161] and is publicly

available on GitLab
2
. The library PyKEEN [9] is used to implement various knowledge

graph embedding methods. For the positive and negative reasoner, we make use of the

Python library scallopy3 based on SCLRam [131]. Wandb [22] is used as experiment

tracking tool.

2https://gitlab.inria.fr/tyrex-public/ruleKGE
3
Scallopy: https://pypi.org/project/scallopy/

130

https://gitlab.inria.fr/tyrex-public/ruleKGE
https://pypi.org/project/scallopy/

8.3. Experimental Evaluation

symmetry

sibling(a,b)←sibling(b,a)

partner(a,b)←partner(b,a)

inversion

parent(x,y)←child(y,x)

child(x,y)←parent(y,x)

wife(x,y)←husband(y,x)

husband(x,y)←wife(y,x)

hierarchy

parent(a,b)←father(a,b)

parent(a,b)←mother(a,b)

parent(a,b)←son(b,a)

parent(a,b)←daughter(b,a)

sibling(a,b)←sister(a,b)

sibling(a,b)←brother(a,b)

partner(a,b)←wife(a,b)

partner(a,b)←husband(a,b)

child(a,b)←daughter(a,b)

child(a,b)←son(a,b)

composition

aunt(x,z)←sister(x,y) and mother(y,z)

aunt(x,z)←sister(x,y) and father(y,z)

uncle(x,z)←brother(x,y) and mother(y,z)

uncle(x,z)←brother(x,y) and father(y,z)

mother(x,z)←wife(x,y) and father(y,z)

father(x,z)←husband(x,y) and mother(y,z)

Figure 8.6.: The programs with positive rules for the inference patterns symmetry, inver-

sion, hierarchy, composition on the Family dataset.

mutual exclusion

not father(x,y)←mother(y,x)

not aunt(x,y)←mother(y,x)

not child(x,y)←mother(y,x)

not sister(x,y)←mother(y,x)

not brother(x,y)←mother(y,x)

not wife(x,y)←mother(y,x)

not husband(x,y)←mother(y,x)

not son(x,y)←mother(y,x)

not daughter(x,y)←mother(y,x)

not nephew(x,y)←mother(y,x)

not niece(x,y)←mother(y,x)

not uncle(x,y)←mother(y,x)

...

not brother(x,y)←wife(y,x)

not father(x,y)←wife(y,x)

antisymmetry

not mother(x,y)←mother(y,x)

not father(x,y)←father(y,x)

not son(x,y)←son(y,x)

not daughter(x,y)←daughter(y,x)

not parent(x,y)←parent(y,x)

not child(x,y)←child(y,x)

not aunt(x,y)←aunt(y,x)

not uncle(x,y)←uncle(y,x)

not wife(x,y)←wife(y,x)

not husband(x,y)←husband(y,x)

not niece(x,y)←niece(y,x)

not nephew(x,y)←nephew(y,x)

Figure 8.7.: The programs for neative reasoning for the inference patterns antisymmetry

and mutual exclusion.

131

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

8.3.4. Analysis of the reasoner (R#1)

First, the reasoning process in RuleKGE on batch graphs is analysed in isolation from the

knowledge graph embedding training.

Reasoning Time. As described in Figure 8.8 for the inversion set, the reasoning time

increases linearly with the number of facts in the input batch. In line with this observation,

the number of inferred facts increases linearly with the batch size.

Figure 8.8.: Left: Reasoning Time vs. batch size. Right: Number of inferred facts vs. batch

size for the inversion rule set.

Relation Frequency. Furthermore, the relation of the facts to be inferred depends on the

predicates that occur in the head atom of the rules. Therefore, the reasoner increases the

frequency of facts corresponding to the head atoms. This is shown in Figures 8.9 for the

hierarchy, inversion, symmetry and composition rule sets.

Fact duplication and leakage. It may happen that the reasoner infers a fact that is

already contained in another batch of the training set. In this case, the inferred fact would

not be an implicit fact, but an explicit fact in another batch. Across all batches, this fact

would contribute to the loss calculation several times, thus increasing the importance of

the fact for the gradient updates.

Potentially, the reasoner could infer facts that are in the test set and violate the disjointness

of the training, validation, and test sets. In this case, the reasoner would leak test data

at the training stage. The magnitude of this problem is shown in Figure 8.10. It can be

seen that the number of redundant facts in the train set decreases with increasing batch

size, which is expected. If the reasoner considers the entire training graph, it cannot

reason about facts in other batches. The number of leaked facts of the train and the test

set increases with the batch size, because more facts are inferred for a larger batch size.

However, in this observed case the problem is minor(∼ 50 leaked test facts per 2,000 facts).

132

8.3. Experimental Evaluation

Figure 8.9.: Number of facts added per relation type vs. batch size for the hierarchy (top

left), inversion (top right), symmetry (bottom left) and composition (bottom

right) rule sets.

Figure 8.10.: Number of redundant facts vs. percentage of missing facts for batch size 512

for the train, valid and test set (left) and number of redundant facts vs. batch

size for the train, valid and test set (right) for the inversion rule set.

133

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

Parameter Value
Batch Size 1024

Early Stopping Delta 0

Early Stopping Patience 50

Epochs 1000

Learning Rate 0.001

Loss

BCE Loss

Margin Ranking Loss

Optimizer Adam

Ratio 𝜌 1.0

Reasoner Semiring top-k-proofs

Reasoner 𝑘 5

Name Embedding
Dimension

Number of
Parameters

BoxE 256 1,551,896

DistMult 50 150,950

QuatE 100 1,207,600

RGCN 500 6,010,692

RotatE 200 1,207,600

TransE 50 138,050

TransH 50 151,550

Table 8.3.: The parameters (left), embedding dimensions and number of parameters (right)

per knowledge graph embedding method.

8.3.5. Positive Reasoning (R#2)

The next step is to evaluate whether positive reasoning is useful for training knowledge

graph embeddings. The reasoner can make implicit facts explicit by reasoning using the

rules. The inferred facts add valuable information to each training batch. The idea is that

they will help the model to learn hidden patterns in the dataset.

In the experiments, the knowledge graph embedding methods TransE, TransR, TransH,

RotatE, BoxE, DistMult, RGCN and QuatE are used. The set of hyperparameters is shown

in Table 8.3 and is based on the set of hyperparameters proposed in [9]. The RGCN has

two hidden layers, a dropout rate of 0.4 and the DistMult score function. The Scallop tool

[95] is used as implementation of the reasoning engine in RuleKGE.

The initial training set is assumed to represent a closed world where explicit facts represent

all positive facts and unknown facts are true negative facts. A percentage of the facts

𝛾 ∈ {0.1, 0.25, 0.5} are randomly deleted to simulate the incompleteness of the graph. Then,

the respective knowledge graph embeddings with and without reasoning are trained on

the incomplete training set. The Margin Ranking Loss is used for the models TransE,

TransH, RotatE and BoxE and the binary cross entropy loss (BCE Loss) for DistMult,

RGCN and QuatE [9]. The rank-based metric Hits@k with 𝑘 = 10 is used to evaluate the

performance of the models. The experiments are run 30 times, and it is reported whether

the Hits@10 on the test set is significantly higher for runs with reasoning. A significance

level of 𝛼 = 0.05 is chosen. The hypotheses are formulated as

𝐻0 : Hits@10𝑟𝑒𝑎𝑠𝑜𝑛 ≤ Hits@10𝑛𝑜𝑟𝑒𝑎𝑠𝑜𝑛

𝐻1 : Hits@10𝑟𝑒𝑎𝑠𝑜𝑛 > Hits@10𝑛𝑜𝑟𝑒𝑎𝑠𝑜𝑛 .
(8.18)

Results. The results for RuleKGEwith the symmetry, inversion, hierarchy and composition

rule sets are shown in the Tables 8.5 to 8.11.

Before evaluating the effectiveness of the reasoner, it is evident that all knowledge graph

embedding models perform worse as the amount of missing data increases. It is observed

134

8.3. Experimental Evaluation

Model missing facts RuleKGE no reasoning delta significance

TransE 10% 0.1249 0.0777 0.0472 ✓
25% 0.0833 0.0479 0.0354 ✓
50% 0.0300 0.0178 0.0122 ✓

TransH 10% 0.5399 0.4984 0.0415 ✓
25% 0.5246 0.5039 0.0208 ✓
50% 0.4730 0.4653 0.0077 ✓

RotatE 10% 0.4202 0.1954 0.2248 ✓
25% 0.2204 0.0663 0.1542 ✓
50% 0.0535 0.0221 0.0314 ✓

BoxE 10% 0.4542 0.4449 0.0092 ✓
25% 0.4090 0.3974 0.0117 ✓
50% 0.2844 0.2731 0.0113 ✓

DistMult 10% 0.1612 0.1520 0.0092 ✗
25% 0.1283 0.1160 0.0123 ✓
50% 0.0661 0.0537 0.0124 ✓

RGCN 10% 0.1602 0.1457 0.0145 ✓
25% 0.0923 0.0733 0.0191 ✓
50% 0.0275 0.0256 0.0019 ✓

QuatE 10% 0.6153 0.6142 0.0010 ✗
25% 0.5512 0.5415 0.0097 ✓
50% 0.3694 0.3316 0.0378 ✓

Table 8.5.: Link Hits@10 for knowledge graph embeddings trained with positive reasoning

on the symmetry rule set.

that the Hits@10 for 10% missing data is higher than for 25% missing data and higher

than for 50% missing data. The general performance of the models regarding 𝐻𝑖𝑡𝑠@𝐾 also

differs. While TransE achieves an average 𝐻𝑖𝑡𝑠@𝐾 of 0.1035 on the test set when no data

is missing, QuatE achieves an average 𝐻𝑖𝑡𝑠@𝐾 of 0.6508 on the test set, see Table 8.13.

Regarding the positive reasoning, the results for the symmetry rule set is presented in

Table 8.5. Training with reasoning significantly improves the performance across all levels

of missing data for the TransE, TransH, RotatE, BoxE, and RGCN models. For QuatE and

DistMult, reasoning is only effective when 25% and 50% of the training data are missing.

One reason for this may be that when a higher percentage of data is missing, also more

potential extentional facts are missing, which decreases the impact of the rules. This may

result in fewer inferred facts that augment the graph. For the inversion rule set, as shown

in Table 8.9, significant improvements are observed across all percentages of missing data

and all models, except for TransH. The results for the hierarchy rule set are presented in

Table 8.7. Again, significant improvements are observed for all percentages of missing data

and all models, with the exception of TransH. For the composition rule set in Table 8.11,

significant improvements are found for all experiments with RotatE, BoxE and QuatE.

However, the RuleKGE does not lead to significant improvements for RGCN, DistMult and

TransH. One reason for this may be that DistMult is unable to capture the composition

135

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

Model missing facts RuleKGE no reasoning delta significance

TransE 10% 0.1058 0.0777 0.0282 ✓
25% 0.0733 0.0479 0.0254 ✓
50% 0.0313 0.0178 0.0135 ✓

TransH 10% 0.4792 0.4984 -0.0192 ✗
25% 0.4546 0.5039 -0.0492 ✗
50% 0.3608 0.4653 -0.1045 ✗

RotatE 10% 0.4014 0.1954 0.2060 ✓
25% 0.2003 0.0663 0.1340 ✓
50% 0.0454 0.0221 0.0233 ✓

BoxE 10% 0.4533 0.4449 0.0084 ✓
25% 0.4081 0.3974 0.0108 ✓
50% 0.2951 0.2731 0.0220 ✓

DistMult 10% 0.2247 0.1520 0.0727 ✓
25% 0.1899 0.1160 0.0739 ✓
50% 0.1278 0.0537 0.0741 ✓

RGCN 10% 0.1747 0.1457 0.0290 ✓
25% 0.1125 0.0733 0.0392 ✓
50% 0.0335 0.0256 0.0079 ✓

QuatE 10% 0.6302 0.6198 0.0104 ✓
25% 0.5667 0.5459 0.0208 ✓
50% 0.3777 0.3339 0.0438 ✓

Table 8.7.: Hits@10 for knowledge graph embeddings trained with positive reasoning on

the hierarchy rule set.

pattern. RGCN uses DistMult as a decoder and is also affected by this limitation. For

TransE, significant improvements can only be achieved when 10% of the data is missing.

8.3.6. Negative Reasoning (R#3)

Instead of generating negative facts by uniform negative sampling [26], negative reasoning
is applied to generate negative facts from negative rules. To evaluate the effectiveness of

negative reasoning in the training loop, the antisymmetry and mutual exclusion rule sets

in Figure 8.7 are considered. The evaluation is implemented as in the experiments for R#2.

In contrast, no positive facts are deleted from the training set, since the negative rules are

only used for obtaining negative facts.

The results for the antisymmetry rule set are shown in Table 8.13. The antisymmetry rule

set contains 12 rules. The number of negative facts generated by the negative reasoner

is not sufficient to meet the required ratio 𝜌 = 1 of positive and negative facts. For this

reason, additional negative facts are generated with uniform negative sampling, see lines

12 to 14 of Algorithm 3. No significant advantage is found for any of the knowledge graph

embeddings tested by generating negative facts with the antisymmetry rule set.

136

8.3. Experimental Evaluation

Model missing facts RuleKGE no reasoning delta significance

TransE 10% 0.1140 0.0775 0.0365 ✓
25% 0.0808 0.0478 0.0330 ✓
50% 0.0338 0.0175 0.0164 ✓

TransH 10% 0.4294 0.4984 -0.0690 ✗
25% 0.4032 0.5039 -0.1007 ✗
50% 0.3439 0.4653 -0.1214 ✗

RotatE 10% 0.4381 0.1954 0.2426 ✓
25% 0.1864 0.0663 0.1202 ✓
50% 0.0517 0.0221 0.0296 ✓

BoxE 10% 0.4558 0.4449 0.0109 ✓
25% 0.4077 0.3974 0.0103 ✓
50% 0.2793 0.2731 0.0062 ✓

DistMult 10% 0.2170 0.1520 0.0650 ✓
25% 0.1770 0.1160 0.0610 ✓
50% 0.1008 0.0537 0.0472 ✓

RGCN 10% 0.1698 0.1457 0.0242 ✓
25% 0.0909 0.0733 0.0176 ✓
50% 0.0331 0.0256 0.0075 ✓

QuatE 10% 0.6428 0.6198 0.0231 ✓
25% 0.5737 0.5459 0.0279 ✓
50% 0.3575 0.3339 0.0236 ✓

Table 8.9.: Hits@10 for knowledge graph embeddings trained with positive reasoning on

the inversion rule set.

The results for negative reasoning on the mutual exclusion programme are presented in

Table 8.15. The mutual exclusion rule set contains 144 rules. In this case, the number of

generated negative facts exceeds the number of facts required, so only remaining number

of facts is sampled from the set of inferred negative facts, as shown in lines 16 and 17 of

the Algorithm 3. As before, there is no significant advantage for any of the model with

RuleKGE. On the contrary, negative reasoning tends to degrade performance compared to

random head or tail corruption.

The negative reasoning process used in these experiments might introduce an excessive

number of negative facts under certain relations apparent in the rules. As a result, there

may be far fewer negative facts that are unrelated for any relation. This might result in a

model that did not learn to distinguish these obviously negative facts from positive facts.

As the evaluation procedure for knowledge graph embeddings only considers the ranking

of the scores of positive and negative facts, this may affect the performance evaluation.

This performance evaluation does not account for the severity of false ranks, whether

they result from predicting an incorrect relation between genuinely related entities or

predicting a relation between unrelated entities.

137

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

Model missing facts RuleKGE no reasoning delta significance

TransE 10% 0.0409 0.0359 0.0050 ✓
25% 0.0233 0.0223 0.0010 ✗
50% 0.0096 0.0094 0.0002 ✗

TransH 10% 0.5362 0.5388 -0.0026 ✗
25% 0.5005 0.4964 0.0041 ✗
50% 0.3717 0.3662 0.0055 ✗

RotatE 10% 0.0938 0.0809 0.0129 ✓
25% 0.0477 0.0426 0.0050 ✓
50% 0.0200 0.0193 0.0007 ✓

BoxE 10% 0.4532 0.4369 0.0163 ✓
25% 0.3701 0.3549 0.0151 ✓
50% 0.1309 0.1243 0.0066 ✓

DistMult 10% 0.0797 0.0747 0.0050 ✗
25% 0.0504 0.0479 0.0025 ✗
50% 0.0077 0.0079 -0.0001 ✗

RGCN 10% 0.0399 0.0380 0.0018 ✗
25% 0.0236 0.0231 0.0005 ✗
50% 0.0170 0.0167 0.0004 ✗

QuatE 10% 0.6129 0.5873 0.0256 ✓
25% 0.4778 0.4469 0.0310 ✓
50% 0.2247 0.2119 0.0129 ✓

Table 8.11.: Link Prediction results (Hits@10) with knowledge graph embeddings trained

with positive reasoning on the composition rule set.

Model RuleKGE no reasoning delta significance

TransE 0.0186 0.1035 -0.0849 ✗

TransH 0.0253 0.4928 -0.4675 ✗

RotatE 0.3796 0.4005 -0.0209 ✗

BoxE 0.2461 0.4696 -0.2235 ✗

DistMult 0.1116 0.1734 -0.0618 ✗

RGCN 0.1047 0.2084 -0.1038 ✗

QuatE 0.6556 0.6508 0.0048 ✗

Table 8.13.: Link prediction results (Hits@10) for knowledge graph embedding training

with negative reasoning on the antisymmetry rule set.

138

8.3. Experimental Evaluation

Model RuleKGE no reasoning delta significance

TransE 0.0039 0.1035 -0.0995 ✗

TransH 0.0113 0.4928 -0.4815 ✗

RotatE 0.0031 0.4005 -0.3974 ✗

BoxE 0.0097 0.4696 -0.4599 ✗

DistMult 0.0950 0.1734 -0.0784 ✗

RGCN 0.0151 0.2084 -0.1933 ✗

QuatE 0.1140 0.6508 -0.5368 ✗

Table 8.15.: Link prediction results (Hits@10) of knowledge graph embedding training

with negative reasoning on the mutual exclusion rule set.

Model RuleKGE no reasoning delta significance

TransE 0.0949 0.0208 0.0741 ✓

TransH 0.4814 0.4688 0.0126 ✗

RotatE 0.4091 0.0630 0.3461 ✓

BoxE 0.4650 0.3935 0.0714 ✓

DistMult 0.2289 0.0604 0.1684 ✓

RGCN 0.0510 0.0295 0.0215 ✓

QuatE 0.6684 0.6508 0.0175 ✓

Table 8.17.: Link prediction results (Hits@10) with zero-shot learning.

8.3.7. Zero-shot Learning (R#4)

It was shown that the positive reasoning of RuleKGE can be used to infer implicit facts

and improve the training of knowledge graph embedding models. Here, we investigate

whether RuleKGE is effective in zero-shot learning scenarios. Zero-shot learning is defined

as the task of predicting classes or relations that do not occur in the training set [34].

These relations are known to exist, but no single fact under these relations is observed

during training. Such relations are called unseen relations:

{(E × R × R)|R = 𝑟 } ∪ F +𝑡𝑟𝑎𝑖𝑛 = ∅. (8.19)

In contrast, the relations that occur in the training set are called seen relations.

In the experiments in for R#4, all facts for unseen relations are deleted from the training

set to simulate the zero-shot learning scenario. Here, the unseen relations are {parent,

sibling, partner, child}. All facts under these relations are removed from the training

set.

However, the reasoner contains knowledge that can be useful in inferring the missing

information. The hierarchy rule set shown in Figure 8.6 is taken into account. The results

139

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

for the zero-shot learning experiments are shown in Table 8.17. The positive reasoning in

the zero-shot scenario leads to significant improvements for all models, except TransH.

8.3.8. Reasoning via an intermediate concept (R#5)

a b

mother

son?

daughter?

a b

c

female

mother

s
is
te
r

daughter

Figure 8.11.: Reasoning with an intermediate concept.

We also test whether reasoning with intermediate concepts helps to learn more meaningful

knowledge graph embeddings for link prediction. The relations of an intermediate concept

do not exist explicitly in the training or test graph. An intermediate concept is a relation

𝑟 ∉ R that does not belong to the initial set of relations, but can be extracted through

reasoning and help to infer facts under known relations in R. Intermediate concepts are

visualised in Figure 8.11.

Example 8.3.1 (Intermediate Concepts). Given a rule mother(x,y)←child(x,y), the fact

mother(a,b) is observed. From this, it can only be inferred that b must be the child of a,

but it is unclear whether b is the son or the daughter of a. However, the intermediate

concept of gender female and male is introduced. The gender is inferred with rules like

female(x)← sister(x,_). If x is the sister of any other entity, then x must be female.

This section explores the use of intermediate concepts in RuleKGE. A set of rules is defined

in Figure 8.12. The concepts female and male are intermediate concepts, while the other

relations are apparent in the graph. As in the previous dimensions, a proportion of the

training facts 𝛾 ∈ {10%, 25%, 50%} are randomly dropped to simulate the incompleteness of

the training graph. Figure 8.13 shows that the reasoner infers unary facts for the genders

as intermediate concepts. However, these facts are only relevant at the reasoning stage to

infer other facts under relations in R. The larger the batch size, the more entities receive

gender information. The results for RuleKGE with intermediate concepts are shown in

Table 8.19. It is observed that reasoning via the intermediate gender concepts on the

Family dataset leads to significant improvements for all rates of missing data for the

TransE, RotatE, BoxE, DistMult and QuatE models. For TransH, significant improvements

are observed only when 10% of the facts are missing. For RGCN, significant improvements

are evident for 10% and 50% of facts missing, but not for 25% of facts missing.

140

8.4. Limitations

intermediate concept

female(x)←daughter(x, _) or sister(x, _) or mother(x, _) or aunt(x, _) or wife(x, _)

male(x)←son(x, _) or brother(x, _) or father(x, _) or uncle(x, _) or husband(x, _)

.

aunt(y,x)←niece(x,y) and female(y)

aunt(y,x)←nephew(x,y) and female(y)

uncle(y,x)←niece(x,y) and male(y)

uncle(y,x)←nephew(x,y) and male(y)

mother(y,x)←child(x,y) and female(y)

father(y,x)←child(x,y) and male(y)

daughter(y,x)←parent(x,y) and female(y)

son(y,x)←parent(x,y) and male(y)

sister(y,x)←sibling(x,y) and female(y)

brother(y,x)←sibling(x,y) and male(y)

Figure 8.12.: Program Intermediate concept

8.4. Limitations

Despite these promising results, RuleKGE has a number of limitations.

Predictable inference. As RuleKGE belongs to the category of knowledge-driven graph

augmentation described in Section 4.3.2, the reasoner contributes knowledge in the form

of additional training data. While this allows the model to more successfully learn patterns

from this data, it does not necessarily lead to predictable and reliable inference with

respect to the rules. Furthermore, even if facts from complex patterns is introduced at the

reasoning stage, the inductive capacity and expressiveness of the chosen knowledge graph

embedding method may limit the extent to which the information is captured and made

relevant at the inference stage.

Scalability. The data volume increases due to the inferred facts by RuleKGE. This can

make training more resource intensive and lead to scalability problems. The complexity

of Datalog reasoning can be exponential. However, the number of facts given to the

reasoner in RuleKGE is controlled by the batch size since reasoning is applied only to the

facts in a batch and not the entire graph. An interesting idea is to apply reasoning in the

neighbourhood of the nodes contained in the batch. This may further reduce the increase

of data volume by the reasoning process.

Noise and Incompleteness. RuleKGE is able to deal with incomplete data, but not with

noise. A basic assumption of the reasoning process is that the facts must be a model of

the rules. Furthermore, the reasoning process is monotone, i.e. new facts can be added,

but once inferred facts cannot be removed. These are strong assumptions, given that

real-world knowledge graphs may contain noisy information. If the explicit facts contain

141

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

Figure 8.13.: Implicit unary facts inferred for the intermediate concept male and female vs.

batch size.

Model missing facts RuleKGE no reasoning delta significance

TransE 10% 0.1184 0.0777 0.0407 ✓
25% 0.0737 0.0479 0.0258 ✓
50% 0.0242 0.0178 0.0064 ✓

TransH 10% 0.5313 0.4984 0.0329 ✓
25% 0.5249 0.5039 0.0210 ✗
50% 0.4722 0.4653 0.0069 ✗

RotatE 10% 0.5274 0.1954 0.3320 ✓
25% 0.3894 0.0663 0.3231 ✓
50% 0.0495 0.0221 0.0274 ✓

BoxE 10% 0.4705 0.4449 0.0256 ✓
25% 0.4232 0.3974 0.0259 ✓
50% 0.3033 0.2731 0.0302 ✓

DistMult 10% 0.2296 0.1520 0.0777 ✓
25% 0.1812 0.1160 0.0652 ✓
50% 0.0982 0.0537 0.0445 ✓

RGCN 10% 0.1590 0.1457 0.0133 ✓
25% 0.0772 0.0733 0.0039 ✗
50% 0.0276 0.0256 0.0020 ✓

QuatE 10% 0.6733 0.6198 0.0535 ✓
25% 0.6197 0.5459 0.0739 ✓
50% 0.4481 0.3339 0.1142 ✓

Table 8.19.: Link prediction results (Hits@10) for reasoning with intermediate concepts.

142

8.5. Conclusion and Outlook

errors, the reasoner may propagate incorrect information because there is no way to detect

and correct errors.

Furthermore, if the extent to which RuleKGE can help with incomplete data is also limited

to the amount of missing data tolerated. If too many facts are missing, there might be not

enough extensional facts that allow the reasoner to infer new facts.

Unwarranted Bias. The reasoner in RuleKGE introduces a bias that allows knowledge

graph embedding models to better capture certain inference patterns. However, there is

a risk that the reasoner may lead to overly biased data. This is particularly relevant for

the generation of negative facts where a bias for the relations in the rules is imposed. For

example, if inference rules generate a large amount of rules under a certain relation, this

relation will be overrepresented. As a future work, normalization methods could provide

a solution.

8.5. Conclusion and Outlook

This chapter introduced the neuro-symbolic method RuleKGE, which combines knowledge

graph embedding training with a symbolic reasoning component. Given a knowledge

graph affected by incompleteness, RuleKGE allows to dynamically infer new positive

facts during training and to incorporate them into the loss computation and gradient

updates. In this way, implicit positive facts of a rule pattern in the knowledge graph are

made explicit and injected into the learned knowledge graph embeddings. Furthermore,

RuleKGE supports negative reasoning, which aims at generating negative facts in a more

coherent way based on prior knowledge. With these features, RuleKGE belongs to the

category of knowledge-aware graph augmentation methods.

The experimental evaluation on the Family dataset with different Datalog programs and

knowledge graph embeddingmethods shows that RuleKGE can be used as amodel-agnostic

framework to help learn better knowledge graph embeddings in the context of incomplete

graphs and especially in zero-shot learning scenarios. However, the use of RuleKGE for

negative reasoning was not shown to be effective for learning more meaningful knowledge

graph embeddings for link prediction. More extensive experiments on other state-of-the-

art benchmarks such as Freebase [25] and Wordnet [149] are an important line of future

work. Some future directions with RuleKGE include improving the negative sampling

technique to find a good balance between generating true negative facts and exposing the

model to different patterns of negative facts. Also, a more integrated combination of the

reasoner with probabilistic reasoning and the knowledge graph embedding to be more

robust to noise is a future area of work.

With respect to the neuro-symbolic desiderata, RuleKGE is knowledge-aware as it processes

prior knowledge in the form of Horn rules in first-order logic. In terms of robustness,

the reasoning process of RuleKGE is not robust to noise, as the reasoning process is

monotone and the facts are assumed to be a model of the rules, while the knowledge graph

embedding process remains robust to noise. However, if the reasoner propagates false

143

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

information to incorrectly inferred facts, this could lead to harmful bias in the knowledge

graph embedding, ultimately leading to performance degradation.

In terms of interpretability, RuleKGE depends on how many new (and correct) facts can

be generated by the reasoner and added to the training set. In consequence, there are still

no guarantees at inference.

Regarding scalability, the limiting factor of RuleKGE is the reasoner, which can become a

bottleneck for large graphs and complex rules.

144

9. Conclusion

In this thesis, the application of neuro-symbolic AI techniques to graphs was studied.

9.1. Summary of Contribution

The following aspects were explored. First, in the state-of-the-art part, different neuro-

symbolic techniques were studied, focusing on general frameworks as well as their ability

to support knowledge graphs. At first sight, these general frameworks seemed to be

theoretically capable of capturing binary predicates and applying them to graphs. It turned

out they were only be applied to toy examples and very small graphs. These examples often

hide the profound limitations of these frameworks when applied to real-world scenario

with reasonably large graphs.

The contribution part started with a reproducibility study of Knowledge Enhanced Neural

Networks. The method was tested in a graph-specific framework. A step-by-step method of

reproducing, replicating and re-evaluating was used to ensure that subsequent extensions

are built on a solid ground. General lessons learned were drawn and crucial aspects were

proposed on how to improve reproducibility in the field of machine learning.

Then, the method KeGNN was proposed that integrates knowledge enhancement layers

and graph neural networks. Their usefulness in graph neural networks was investigated

on the task of node classification on homogeneous graphs. The experiments provided no

evidence for the effectiveness of the knowledge enhancement. One explanation for this

observation is that the information in the rules was often redundant with the inductive bias

of the GNN. Another issue was related to the benchmarks. State-of-the-art benchmarks

were used that turned out to be not representative and expressive enough (homogeneous,

limited opportunities for inference).

Subsequently, KeGNN was applied to large graphs, focussing on node classification in

homogeneous graphs. Some serious representation issues related to memory requirements

were encountered, particularly when training on large graphs. To mitigate this, a sampling

mechanism called restrictive neighbourhood sampling was proposed to split data into mini-

batches based on the graph structure. In this way, the sparse nature of the graphs is better

taken into account and the information loss of the batching process is considered. This

sampling technique makes knowledge enhancement layers applicable to large graphs.

Moreover, the method RuleKGE was introduced, which addresses the task of link prediction

on unattributed knowledge graphs. Horn rules were incorporated into the training loop,

145

9. Conclusion

along with a positive and negative reasoning step. The goal was to train knowledge graph

embeddings in an informed way by using rules from ontologies. RuleKGE was shown to

be effective on incomplete graphs in various experimental settings. It turned out to be

particularly effective in zero-shot learning scenarios where some relations were unseen in

the training graph. However, negative reasoning did not show the expected benefits. One

reason for this may be that the negative facts generated by the negative reasoner are too

biased towards a particular pattern of negative facts. A future direction with RuleKGE

involves improving the negative reasoning technique to allow the model to learn different

patterns of negative facts.

9.2. Perspectives and Future Directions

Looking ahead, several open questions and perspectives for future work emerge from this

thesis, highlighting both the progress made and the challenges ahead.

Benchmarking. Studies that experimentally compare existing approaches on the same

data are lacking. Many works in the state-of-the-art use different datasets or versions. This

prevents meaningful comparisons and is a barrier to successful progress in neuro-symbolic

AI on graphs. Prior knowledge is often not included in the data and every work comes

with its own set of rules. To ensure that evaluations are both realistic and informative,

neuro-symbolic benchmarks should provide the data and the prior knowledge.

The provided level of knowledge. A significant difference exists in the expressivity of

knowledge supported by several neuro-symbolic methods. Most of the methods deal only

with simple rules. Capturing complex rules within the embedding space or within neural

methods remains an open question. This includes, for example, multi-hop rules, recursive

rules, n-ary predicates, or quantification. While most of the existing approaches focus on

the use of such rules in training, their reliability in inference often remains unclear.

Graph symbol grounding problem. General neuro-symbolic frameworks such as LTN,

DeepProblog and KENN require significant redesign to be usable for large graphs. They

have been built under the closed-world assumption. As a consequence, they rely on dense

representations that not only do not scale, particularly with negated facts, and fail to

capture unknown relations. A typical example is the Logic Tensor Networks that rely on

adjacency matrices to represent relations. It would be more appropriate to rely only on

the explicit facts (relation tuples).

146

Bibliography

[1] AAAI. Reproducibility Checklist. https://aaai.org/conference/aaai/aaai-
23/reproducibility-checklist/. Accessed: 2023-01-04. 2023.

[2] Ralph Abboud and İsmail İlkan Ceylan. Node Classification Meets Link Prediction on
Knowledge Graphs. 2021. doi: 10.48550/ARXIV.2106.07297. url: https://arxiv.
org/abs/2106.07297.

[3] Ralph Abboud et al. “BoxE: A Box Embedding Model for Knowledge Base Comple-

tion”. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et
al. Vol. 33. Curran Associates, Inc., 2020, pp. 9649–9661. url: https://proceedings.

neurips.cc/paper_files/paper/2020/file/6dbbe6abe5f14af882ff977fc3f35501-

Paper.pdf.

[4] Ralph Abboud et al. “The Surprising Power of Graph Neural Networks with Random

Node Initialization”. In: Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21. Ed. by Zhi-Hua Zhou. Main Track. International

Joint Conferences on Artificial Intelligence Organization, Aug. 2021, pp. 2112–2118.

doi: 10.24963/ijcai.2021/291. url: https://doi.org/10.24963/ijcai.2021/

291.

[5] Serge Abiteboul, Richard Hull, and Victor Vianu. “Foundations of Databases”. In:

Jan. 1995. isbn: 0-201-53771-0.

[6] ACM. Association for Computing Machinery. Artifact review and badging, 1.1. https:
//www.acm.org/publications/policies/artifact-review-badging. Accessed:

2023-01-04. 2016.

[7] Kian Ahrabian et al. “Structure Aware Negative Sampling in Knowledge Graphs”.

In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP). Ed. by BonnieWebber et al. Online: Association for Computational

Linguistics, Nov. 2020, pp. 6093–6101. doi: 10.18653/v1/2020.emnlp-main.492.

url: https://aclanthology.org/2020.emnlp-main.492.

[8] Saeed S. Alahmari et al. “Challenges for the Repeatability of Deep LearningModels”.

In: IEEE Access 8 (2020), pp. 211860–211868. doi: 10.1109/ACCESS.2020.3039833.

[9] Mehdi Ali et al. “Bringing Light Into the Dark: A Large-Scale Evaluation of Knowl-

edge Graph Embedding Models Under a Unified Framework”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 44.12 (Dec. 2022), pp. 8825–8845. issn:
1939-3539. doi: 10.1109/tpami.2021.3124805. url: http://dx.doi.org/10.1109/

TPAMI.2021.3124805.

147

https://aaai.org/conference/aaai/aaai-23/reproducibility-checklist/
https://aaai.org/conference/aaai/aaai-23/reproducibility-checklist/
https://doi.org/10.48550/ARXIV.2106.07297
https://arxiv.org/abs/2106.07297
https://arxiv.org/abs/2106.07297
https://proceedings.neurips.cc/paper_files/paper/2020/file/6dbbe6abe5f14af882ff977fc3f35501-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6dbbe6abe5f14af882ff977fc3f35501-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6dbbe6abe5f14af882ff977fc3f35501-Paper.pdf
https://doi.org/10.24963/ijcai.2021/291
https://doi.org/10.24963/ijcai.2021/291
https://doi.org/10.24963/ijcai.2021/291
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.18653/v1/2020.emnlp-main.492
https://aclanthology.org/2020.emnlp-main.492
https://doi.org/10.1109/ACCESS.2020.3039833
https://doi.org/10.1109/tpami.2021.3124805
http://dx.doi.org/10.1109/TPAMI.2021.3124805
http://dx.doi.org/10.1109/TPAMI.2021.3124805

Bibliography

[10] Ankit Ankit et al. “[Re] counterfactual generative networks”. In: ReScience C 8.#2

(2 2022). doi: 10.5281/zenodo.6574625.

[11] A. Artale et al. “The DL-Lite Family and Relations”. In: Journal of Artificial Intelli-
gence Research 36 (Oct. 2009), pp. 1–69. issn: 1076-9757. doi: 10.1613/jair.2820.

url: http://dx.doi.org/10.1613/jair.2820.

[12] Franz Baader et al. An Introduction to Description Logic. Cambridge University Press,

2017. doi: 10.1017/9781139025355.

[13] Sebastian Bader and Pascal Hitzler. Dimensions of Neural-symbolic Integration - A
Structured Survey. 2005. arXiv: cs/0511042 [cs.AI].

[14] Samy Badreddine et al. “Logic Tensor Networks”. In: Artificial Intelligence 303 (Feb.
2022), p. 103649. doi: 10.1016/j.artint.2021.103649. url: https://doi.org/10.

1016%2Fj.artint.2021.103649.

[15] Pradeep Kr. Banerjee et al. Oversquashing in GNNs through the lens of information
contraction and graph expansion. 2022. arXiv: 2208.03471 [cs.LG].

[16] Chitta Baral and Michael Gelfond. “Logic programming and knowledge represen-

tation”. In: The Journal of Logic Programming 19-20 (1994). Special Issue: Ten Years

of Logic Programming, pp. 73–148. issn: 0743-1066. doi: https://doi.org/10.

1016/0743-1066(94)90025-6. url: https://www.sciencedirect.com/science/

article/pii/0743106694900256.

[17] Yoshua Bengia and Gary Marcus. Ai debate: the best way forward for AI. https:
//montrealartificialintelligence.com/aidebate/. Accessed on 13 December

2021. 2021.

[18] Yoshua Bengio et al. A Meta-Transfer Objective for Learning to Disentangle Causal
Mechanisms. 2019. arXiv: 1901.10912 [cs.LG].

[19] Tarek R. Besold et al. Neural-Symbolic Learning and Reasoning: A Survey and
Interpretation. 2017. arXiv: 1711.03902 [cs.AI].

[20] K. Bhatia et al. The extreme classification repository: Multi-label datasets and code.
2016. url: http://manikvarma.org/downloads/XC/XMLRepository.html.

[21] Joanna Biega, Erdal Kuzey, and Fabian Suchanek. “Inside YAGO2s: a transparent

information extraction architecture”. In: May 2013, pp. 325–328.

[22] Lukas Biewald. Experiment Tracking with Weights and Biases. Software available
from wandb.com. 2020. url: https://www.wandb.com/.

[23] Russa Biswas et al. “Knowledge Graph Embeddings: Open Challenges and Oppor-

tunities”. In: Transactions on Graph Data and Knowledge 1.1 (2023), 4:1–4:32. doi:
10.4230/TGDK.1.1.4. url: https://drops.dagstuhl.de/entities/document/10.

4230/TGDK.1.1.4.

[24] Wilfredo Blanco et al. “Non-replicability circumstances in a neural network model

with Hodgkin-Huxley-type neurons”. In: Journal of computational neuroscience 48.3
(2020), pp. 357–363. doi: 10.1007/s10827-020-00748-3.

148

https://doi.org/10.5281/zenodo.6574625
https://doi.org/10.1613/jair.2820
http://dx.doi.org/10.1613/jair.2820
https://doi.org/10.1017/9781139025355
https://arxiv.org/abs/cs/0511042
https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1016%2Fj.artint.2021.103649
https://doi.org/10.1016%2Fj.artint.2021.103649
https://arxiv.org/abs/2208.03471
https://doi.org/https://doi.org/10.1016/0743-1066(94)90025-6
https://doi.org/https://doi.org/10.1016/0743-1066(94)90025-6
https://www.sciencedirect.com/science/article/pii/0743106694900256
https://www.sciencedirect.com/science/article/pii/0743106694900256
https://montrealartificialintelligence .com /aidebate/
https://montrealartificialintelligence .com /aidebate/
https://arxiv.org/abs/1901.10912
https://arxiv.org/abs/1711.03902
http://manikvarma.org/downloads/XC/XMLRepository.html
https://www.wandb.com/
https://doi.org/10.4230/TGDK.1.1.4
https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.4
https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.4
https://doi.org/10.1007/s10827-020-00748-3

[25] Kurt Bollacker et al. “Freebase: A Collaboratively Created Graph Database for Struc-

turing Human Knowledge”. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’08. Vancouver, Canada: Associa-

tion for Computing Machinery, 2008, pp. 1247–1250. isbn: 9781605581026. doi:

10.1145/1376616.1376746. url: https://doi.org/10.1145/1376616.1376746.

[26] Antoine Bordes et al. “Translating Embeddings for Modeling Multi-relational Data”.

In:Advances in Neural Information Processing Systems. Ed. by C.J. Burges et al. Vol. 26.
Curran Associates, Inc., 2013. url: https://proceedings.neurips.cc/paper_

files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

[27] Michael M. Bronstein et al. “Geometric Deep Learning: Going beyond Euclidean

data”. In: IEEE Signal Processing Magazine 34.4 (July 2017), pp. 18–42. issn: 1558-

0792. doi: 10.1109/msp.2017.2693418. url: http://dx.doi.org/10.1109/MSP.

2017.2693418.

[28] Andrea Cali, Georg Gottlob, and Thomas Lukasiewicz. “A general datalog-based

framework for tractable query answering over ontologies”. In: Proceedings of
the Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems. PODS ’09. <conf-loc>, <city>Providence</city>, <state>Rhode
Island</state>, <country>USA</country>, </conf-loc>: Association for Computing

Machinery, 2009, pp. 77–86. isbn: 9781605585536. doi: 10.1145/1559795.1559809.

url: https://doi.org/10.1145/1559795.1559809.

[29] Alison Callahan et al. “Bio2RDF Release 2: Improved Coverage, Interoperability

and Provenance of Life Science Linked Data”. In: vol. 7882. May 2013, pp. 200–212.

isbn: 978-3-642-38287-1. doi: 10.1007/978-3-642-38288-8_14.

[30] Jiahang Cao et al. Knowledge Graph Embedding: A Survey from the Perspective of
Representation Spaces. 2023. arXiv: 2211.03536 [cs.LG].

[31] Andrew Carlson et al. “Toward an Architecture for Never-Ending Language Learn-

ing”. In: Proceedings of the AAAI Conference on Artificial Intelligence 24.1 (July 2010),
pp. 1306–1313. doi: 10.1609/aaai.v24i1.7519. url: https://ojs.aaai.org/

index.php/AAAI/article/view/7519.

[32] Andrea Cavallo et al. “GCNH: A Simple Method For Representation Learning On

Heterophilous Graphs”. In: 2023 International Joint Conference on Neural Networks
(IJCNN). IEEE, June 2023. doi: 10.1109/ijcnn54540.2023.10191196. url: http:
//dx.doi.org/10.1109/IJCNN54540.2023.10191196.

[33] Boyuan Chen et al. “Towards Training Reproducible Deep Learning Models”. In:

Proceedings of the 44th International Conference on Software Engineering. ICSE ’22.

Pittsburgh, Pennsylvania: Association for Computing Machinery, 2022, pp. 2202–

2214. isbn: 9781450392211. doi: 10.1145/3510003.3510163. url: https://doi.

org/10.1145/3510003.3510163.

149

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.1109/msp.2017.2693418
http://dx.doi.org/10.1109/MSP.2017.2693418
http://dx.doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1145/1559795.1559809
https://doi.org/10.1145/1559795.1559809
https://doi.org/10.1007/978-3-642-38288-8_14
https://arxiv.org/abs/2211.03536
https://doi.org/10.1609/aaai.v24i1.7519
https://ojs.aaai.org/index.php/AAAI/article/view/7519
https://ojs.aaai.org/index.php/AAAI/article/view/7519
https://doi.org/10.1109/ijcnn54540.2023.10191196
http://dx.doi.org/10.1109/IJCNN54540.2023.10191196
http://dx.doi.org/10.1109/IJCNN54540.2023.10191196
https://doi.org/10.1145/3510003.3510163
https://doi.org/10.1145/3510003.3510163
https://doi.org/10.1145/3510003.3510163

Bibliography

[34] Jiaoyan Chen et al. “Knowledge-aware Zero-Shot Learning: Survey and Perspec-

tive”. In: Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21. Ed. by Zhi-Hua Zhou. Survey Track. International Joint Con-

ferences on Artificial Intelligence Organization, Aug. 2021, pp. 4366–4373. doi:

10.24963/ijcai.2021/597. url: https://doi.org/10.24963/ijcai.2021/597.

[35] Jie Chen, Tengfei Ma, and Cao Xiao. “FastGCN: Fast Learning with Graph Convo-

lutional Networks via Importance Sampling.” In: ICLR (Poster). OpenReview.net,
2018. url: http://dblp.uni-trier.de/db/conf/iclr/iclr2018.html#ChenMX18.

[36] Kewei Cheng et al. “UniKER: A Unified Framework for Combining Embedding and

Definite Horn Rule Reasoning for Knowledge Graph Inference”. In: Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing. Ed.
by Marie-Francine Moens et al. Online and Punta Cana, Dominican Republic:

Association for Computational Linguistics, Nov. 2021, pp. 9753–9771. doi: 10.

18653/v1/2021.emnlp-main.769. url: https://aclanthology.org/2021.emnlp-

main.769.

[37] Wei-Lin Chiang et al. “Cluster-GCN: An Efficient Algorithm for Training Deep and

Large Graph Convolutional Networks”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. KDD ’19. An-

chorage, AK, USA: Association for Computing Machinery, 2019, pp. 257–266. isbn:

9781450362016. doi: 10.1145/3292500.3330925. url: https://doi.org/10.1145/

3292500.3330925.

[38] Francois Chollet et al. Keras. https://keras.io. Accessed: 2023-01-04. 2015.

[39] Philipp Cimiano and Heiko Paulheim. “Knowledge graph refinement: A survey of

approaches and evaluation methods”. In: Semant. Web 8.3 (Jan. 2017), pp. 489–508.
issn: 1570-0844. doi: 10.3233/SW-160218. url: https://doi.org/10.3233/SW-

160218.

[40] Andrew Cropper, Sebastijan Dumančić, and Stephen H. Muggleton. Turning 30:
New Ideas in Inductive Logic Programming. 2020. arXiv: 2002.11002 [cs.AI].

[41] J. Cullen and A. Bryman. “The Knowledge Acquisition Bottleneck: Time for Re-

assessment?” In: Expert Systems 5.3 (1988), pp. 216–225. doi: https://doi.org/
10 . 1111 / j . 1468 - 0394 . 1988 . tb00065 . x. eprint: https : / / onlinelibrary .

wiley . com / doi / pdf / 10 . 1111 / j . 1468 - 0394 . 1988 . tb00065 . x. url: https :

//onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0394.1988.tb00065.x.

[42] Claudia d’Amato, Nicola Quatraro, and Nicola Fanizzi. “Injecting Background

Knowledge into Embedding Models for Predictive Tasks on Knowledge Graphs”.

In: May 2021, pp. 441–457. isbn: 978-3-030-77384-7. doi: 10.1007/978-3-030-

77385-4_26.

[43] Yuanfei Dai et al. “A Survey on Knowledge Graph Embedding: Approaches, Appli-

cations and Benchmarks”. In: Electronics 9.5 (2020). issn: 2079-9292. doi: 10.3390/
electronics9050750. url: https://www.mdpi.com/2079-9292/9/5/750.

150

https://doi.org/10.24963/ijcai.2021/597
https://doi.org/10.24963/ijcai.2021/597
http://dblp.uni-trier.de/db/conf/iclr/iclr2018.html#ChenMX18
https://doi.org/10.18653/v1/2021.emnlp-main.769
https://doi.org/10.18653/v1/2021.emnlp-main.769
https://aclanthology.org/2021.emnlp-main.769
https://aclanthology.org/2021.emnlp-main.769
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://keras.io
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218
https://arxiv.org/abs/2002.11002
https://doi.org/https://doi.org/10.1111/j.1468-0394.1988.tb00065.x
https://doi.org/https://doi.org/10.1111/j.1468-0394.1988.tb00065.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0394.1988.tb00065.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0394.1988.tb00065.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0394.1988.tb00065.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0394.1988.tb00065.x
https://doi.org/10.1007/978-3-030-77385-4_26
https://doi.org/10.1007/978-3-030-77385-4_26
https://doi.org/10.3390/electronics9050750
https://doi.org/10.3390/electronics9050750
https://www.mdpi.com/2079-9292/9/5/750

[44] Zihang Dai, Lei Li, and Wei Xu. “CFO: Conditional Focused Neural Question

Answering with Large-scale Knowledge Bases”. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Ed.
by Katrin Erk and Noah A. Smith. Berlin, Germany: Association for Computational

Linguistics, Aug. 2016, pp. 800–810. doi: 10.18653/v1/P16- 1076. url: https:

//aclanthology.org/P16-1076.

[45] Alessandro Daniele and Luciano Serafini. “Knowledge Enhanced Neural Networks”.

In: PRICAI 2019: Trends in Artificial Intelligence. Ed. by Abhaya C. Nayak and

Alok Sharma. Cham: Springer International Publishing, 2019, pp. 542–554. isbn:

978-3-030-29908-8.

[46] Alessandro Daniele and Luciano Serafini. “Knowledge Enhanced Neural Networks

for Relational Domains”. In: AIxIA 2022 – Advances in Artificial Intelligence. Ed.
by Agostino Dovier, Angelo Montanari, and Andrea Orlandini. Cham: Springer

International Publishing, 2023, pp. 91–109. isbn: 978-3-031-27181-6.

[47] Alessandro Daniele and Luciano Serafini. “Neural Networks Enhancement through

Prior Logical Knowledge”. In: ArXiv abs/2009.06087 (2020).

[48] Alessandro Daniele and Luciano Serafini. Neural Networks Enhancement with Logi-
cal Knowledge. https://arxiv.org/abs/2009.06087. 2020. doi: 10.48550/ARXIV.
2009.06087.

[49] Adnan Darwiche. “SDD: a new canonical representation of propositional knowl-

edge bases”. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence - Volume Volume Two. IJCAI’11. Barcelona, Catalonia, Spain:
AAAI Press, 2011, pp. 819–826. isbn: 9781577355144.

[50] Luc De Raedt et al. “From statistical relational to neural-symbolic artificial intelli-

gence”. In: Proceedings of the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence. IJCAI’20. Yokohama, Yokohama, Japan, 2021. isbn: 9780999241165.

[51] Craig DeLancey. A Concise Introduction to Logic. Geneseo, NY: Open SUNY Text-

books, 2017.

[52] Lauren Nicole DeLong et al. Neurosymbolic AI for Reasoning on Graph Structures: A
Survey. https://arxiv.org/abs/2302.07200. 2023. arXiv: 2302.07200 [cs.AI].

[53] Caglar Demir and Axel-Cyrille Ngonga Ngomo. “Neuro-Symbolic Class Expression

Learning”. In: The 32nd International Joint Conference on Artificial Intelligence, IJCAI
2023. 2023. url: https://papers.dice-research.org/2023/IJCAI_DRILL/public.
pdf.

[54] Wenqing Deng et al. “Choice-Driven Contextual Reasoning for Commonsense

Question Answering”. In: PRICAI 2022: Trends in Artificial Intelligence: 19th Pacific
Rim International Conference on Artificial Intelligence, PRICAI 2022, Shanghai, China,
November 10–13, 2022, Proceedings, Part II. Shangai, China: Springer-Verlag, 2022,
pp. 335–346. isbn: 978-3-031-20864-5. doi: 10.1007/978-3-031-20865-2_25. url:

https://doi.org/10.1007/978-3-031-20865-2_25.

151

https://doi.org/10.18653/v1/P16-1076
https://aclanthology.org/P16-1076
https://aclanthology.org/P16-1076
https://arxiv.org/abs/2009.06087
https://doi.org/10.48550/ARXIV.2009.06087
https://doi.org/10.48550/ARXIV.2009.06087
https://arxiv.org/abs/2302.07200
https://arxiv.org/abs/2302.07200
https://papers.dice-research.org/2023/IJCAI_DRILL/public.pdf
https://papers.dice-research.org/2023/IJCAI_DRILL/public.pdf
https://doi.org/10.1007/978-3-031-20865-2_25
https://doi.org/10.1007/978-3-031-20865-2_25

Bibliography

[55] Tim Dettmers et al. “Convolutional 2D Knowledge Graph Embeddings”. In: Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth
Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence. AAAI’18/IAAI’18/EAAI’18.
New Orleans, Louisiana, USA: AAAI Press, 2018. isbn: 978-1-57735-800-8.

[56] Michelangelo Diligenti, Marco Gori, and Claudio Saccà. “Semantic-based regu-

larization for learning and inference”. In: Artificial Intelligence 244 (2017). Com-

bining Constraint Solving with Mining and Learning, pp. 143–165. issn: 0004-

3702. doi: https://doi.org/10.1016/j.artint.2015.08.011. url: https:

//www.sciencedirect.com/science/article/pii/S0004370215001344.

[57] Ivan Donadello, Luciano Serafini, and Artur d’Avila Garcez. “Logic Tensor Networks

for Semantic Image Interpretation”. In: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17. 2017, pp. 1596–1602. doi: 10.
24963/ijcai.2017/221. url: https://doi.org/10.24963/ijcai.2017/221.

[58] Christopher Drummond. Replicability is not reproducibility: nor is it good science.
http://cogprints.org/7691/. CogPrints. Accessed: 2023-01-04. 2009.

[59] Keyu Duan et al. “A Comprehensive Study on Large-Scale Graph Training: Bench-

marking and Rethinking”. In: Thirty-sixth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track. 2022.

[60] Stefano Faralli et al. “The ContrastMedium Algorithm: Taxonomy Induction From

Noisy Knowledge Graphs With Just A Few Links”. In: Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics:
Volume 1, Long Papers. Ed. by Mirella Lapata, Phil Blunsom, and Alexander Koller.

Valencia, Spain: Association for Computational Linguistics, Apr. 2017, pp. 590–600.

url: https://aclanthology.org/E17-1056.

[61] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learningwith PyTorch

Geometric”. In: ICLR 2019 Workshop on Representation Learning on Graphs and
Manifolds. New Orleans, USA, 2019. url: https://arxiv.org/abs/1903.02428.

[62] Matthias Fey et al. GNNAutoScale: Scalable and Expressive Graph Neural Networks
via Historical Embeddings. 2021. doi: 10.48550/ARXIV.2106.05609. url: https:
//arxiv.org/abs/2106.05609.

[63] Daan Fierens et al. “Inference and learning in probabilistic logic programs using

weighted Boolean formulas”. In: Theory and Practice of Logic Programming 15.3

(Apr. 2014), pp. 358–401. issn: 1475-3081. doi: 10.1017/s1471068414000076. url:

http://dx.doi.org/10.1017/S1471068414000076.

[64] Jessica Zosa Forde and Michela Paganini. “The Scientific Method in the Science of

Machine Learning”. In: ICLR 2019 workshop, May 6, New Orleans (2019).

[65] Luis Antonio Galarraga et al. “AMIE: association rule mining under incomplete

evidence in ontological knowledge bases”. In: Proceedings of the 22nd International
Conference on World Wide Web. WWW ’13. Rio de Janeiro, Brazil: Association for

Computing Machinery, 2013, pp. 413–422. isbn: 9781450320351. doi: 10.1145/

2488388.2488425. url: https://doi.org/10.1145/2488388.2488425.

152

https://doi.org/https://doi.org/10.1016/j.artint.2015.08.011
https://www.sciencedirect.com/science/article/pii/S0004370215001344
https://www.sciencedirect.com/science/article/pii/S0004370215001344
https://doi.org/10.24963/ijcai.2017/221
https://doi.org/10.24963/ijcai.2017/221
https://doi.org/10.24963/ijcai.2017/221
http://cogprints.org/7691/
https://aclanthology.org/E17-1056
https://arxiv.org/abs/1903.02428
https://doi.org/10.48550/ARXIV.2106.05609
https://arxiv.org/abs/2106.05609
https://arxiv.org/abs/2106.05609
https://doi.org/10.1017/s1471068414000076
http://dx.doi.org/10.1017/S1471068414000076
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425

[66] Luis Galárraga et al. “Fast rule mining in ontological knowledge bases with AMIE+”.

In: The VLDB Journal 24.6 (Dec. 2015), pp. 707–730. issn: 1066-8888. doi: 10.1007/
s00778-015-0394-1. url: https://doi.org/10.1007/s00778-015-0394-1.

[67] Artur d’Avila Garcez and Luis C. Lamb. Neurosymbolic AI: The 3rd Wave. 2020.
arXiv: 2012.05876 [cs.AI].

[68] Artur d’Avila Garcez et al. Neural-Symbolic Computing: An Effective Methodology for
Principled Integration of Machine Learning and Reasoning. 2019. arXiv: 1905.06088
[cs.AI].

[69] Marta Garnelo and Murray Shanahan. “Reconciling deep learning with symbolic

artificial intelligence: representing objects and relations”. In: Current Opinion in
Behavioral Sciences 29 (2019). Artificial Intelligence, pp. 17–23. issn: 2352-1546.

doi: https://doi.org/10.1016/j.cobeha.2018.12.010. url: https://www.

sciencedirect.com/science/article/pii/S2352154618301943.

[70] Aryo Pradipta Gema et al. Knowledge Graph Embeddings in the Biomedical Do-
main: Are They Useful? A Look at Link Prediction, Rule Learning, and Downstream
Polypharmacy Tasks. 2023. arXiv: 2305.19979 [cs.LG].

[71] Genet Asefa Gesese, Russa Biswas, and Harald Sack. “A Comprehensive Survey

of Knowledge Graph Embeddings with Literals: Techniques and Applications”.

In: DL4KG@ESWC. 2019. url: https://api.semanticscholar.org/CorpusID:
186206127.

[72] Steven Goodman, Daniele Fanelli, and John Ioannidis. “What does research repro-

ducibility mean?” In: Science translational medicine 8.341 (2016). doi: 10.1126/

scitranslmed.aaf5027.

[73] Eleonora Grilli et al. “Knowledge Enhanced Neural Networks for Point Cloud

Semantic Segmentation”. In: vol. 15. 10. 2023. doi: 10.3390/rs15102590. url:

https://www.mdpi.com/2072-4292/15/10/2590.

[74] Odd Erik Gundersen. “The Reproducibility Crisis Is Real”. In: AI Magazine 41.3
(Sept. 2020), pp. 103–106. doi: 10.1609/aimag.v41i3.5318. url: https://ojs.

aaai.org/aimagazine/index.php/aimagazine/article/view/5318.

[75] Odd Erik Gundersen, Yolanda Gil, and DavidW. Aha. “On Reproducible AI: Towards

Reproducible Research, Open Science, and Digital Scholarship in AI Publications”.

In: AI Magazine 39.3 (Sept. 2018), pp. 56–68. doi: 10.1609/aimag.v39i3.2816.

url: https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/

2816.

[76] Odd Erik Gundersen and Sigbjørn Kjensmo. “State of the Art: Reproducibility in

Artificial Intelligence”. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence 32.1 (Apr. 2018). doi: 10.1609/aaai.v32i1.11503. url: https://ojs.aaai.
org/index.php/AAAI/article/view/11503.

153

https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.1007/s00778-015-0394-1
https://arxiv.org/abs/2012.05876
https://arxiv.org/abs/1905.06088
https://arxiv.org/abs/1905.06088
https://doi.org/https://doi.org/10.1016/j.cobeha.2018.12.010
https://www.sciencedirect.com/science/article/pii/S2352154618301943
https://www.sciencedirect.com/science/article/pii/S2352154618301943
https://arxiv.org/abs/2305.19979
https://api.semanticscholar.org/CorpusID:186206127
https://api.semanticscholar.org/CorpusID:186206127
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.3390/rs15102590
https://www.mdpi.com/2072-4292/15/10/2590
https://doi.org/10.1609/aimag.v41i3.5318
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/5318
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/5318
https://doi.org/10.1609/aimag.v39i3.2816
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2816
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2816
https://doi.org/10.1609/aaai.v32i1.11503
https://ojs.aaai.org/index.php/AAAI/article/view/11503
https://ojs.aaai.org/index.php/AAAI/article/view/11503

Bibliography

[77] Shu Guo et al. “Jointly Embedding Knowledge Graphs and Logical Rules”. In: Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.
Austin, Texas: Association for Computational Linguistics, Nov. 2016, pp. 192–202.

doi: 10.18653/v1/D16-1019. url: https://aclanthology.org/D16-1019.

[78] Shu Guo et al. “Knowledge Graph Embedding With Iterative Guidance From Soft

Rules”. In: Proceedings of the AAAI Conference on Artificial Intelligence 32.1 (Apr.
2018). doi: 10.1609/aaai.v32i1.11918. url: https://ojs.aaai.org/index.php/

AAAI/article/view/11918.

[79] Victor Gutierrez-Basulto and Steven Schockaert. From Knowledge Graph Embedding
to Ontology Embedding? An Analysis of the Compatibility between Vector Space
Representations and Rules. 2018. arXiv: 1805.10461 [cs.AI].

[80] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning
on Large Graphs. 2017. doi: 10.48550/ARXIV.1706.02216. url: https://arxiv.
org/abs/1706.02216.

[81] Chi Han et al. Logical Entity Representation in Knowledge-Graphs for Differentiable
Rule Learning. 2023. arXiv: 2305.12738 [cs.AI].

[82] Junheng Hao et al. “Universal Representation Learning of Knowledge Bases by

Jointly Embedding Instances and Ontological Concepts”. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &DataMining. KDD
’19. Anchorage, AK, USA: Association for Computing Machinery, 2019, pp. 1709–

1719. isbn: 9781450362016. doi: 10.1145/3292500.3330838. url: https://doi.

org/10.1145/3292500.3330838.

[83] Frank van Harmelen. The K in neuro-symbolic stands for knowledge. https://de.
slideshare.net/slideshow/the-k-in-neurosymbolic-stands-for-knowledge/

258584872. June 2023.

[84] Stevan Harnad. “The symbol grounding problem”. In: Physica D: Nonlinear Phe-
nomena 42.1–3 (June 1990), pp. 335–346. issn: 0167-2789. doi: 10.1016/0167-

2789(90)90087-6. url: http://dx.doi.org/10.1016/0167-2789(90)90087-6.

[85] L Vivek Harsha Vardhan, Guo Jia, and Stanley Kok. “Probabilistic Logic Graph

Attention Networks for Reasoning”. In: Companion Proceedings of the Web Con-
ference 2020. WWW ’20. Taipei, Taiwan: Association for Computing Machinery,

2020, pp. 669–673. isbn: 9781450370240. doi: 10.1145/3366424.3391265. url:

https://doi.org/10.1145/3366424.3391265.

[86] Qi He, Bee-Chung Chen, and Deepak Agarwal. Building The LinkedIn Knowledge
Graph. LinkedIn Blog. Slides at https://speakerdeck.com/emeij/understanding-
news-using-the-bloomberg-knowledge-graph. 2016.

[87] Peter Henderson et al. “Deep Reinforcement Learning That Matters”. In: Proceedings
of AAAI’18/IAAI’18/EAAI’18 conferences in Artificial Intelligence. New Orleans,

Louisiana, USA: AAAI Press, 2018. isbn: 978-1-57735-800-8.

154

https://doi.org/10.18653/v1/D16-1019
https://aclanthology.org/D16-1019
https://doi.org/10.1609/aaai.v32i1.11918
https://ojs.aaai.org/index.php/AAAI/article/view/11918
https://ojs.aaai.org/index.php/AAAI/article/view/11918
https://arxiv.org/abs/1805.10461
https://doi.org/10.48550/ARXIV.1706.02216
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/2305.12738
https://doi.org/10.1145/3292500.3330838
https://doi.org/10.1145/3292500.3330838
https://doi.org/10.1145/3292500.3330838
https://de.slideshare.net/slideshow/the-k-in-neurosymbolic-stands-for-knowledge/258584872
https://de.slideshare.net/slideshow/the-k-in-neurosymbolic-stands-for-knowledge/258584872
https://de.slideshare.net/slideshow/the-k-in-neurosymbolic-stands-for-knowledge/258584872
https://doi.org/10.1016/0167-2789(90)90087-6
https://doi.org/10.1016/0167-2789(90)90087-6
http://dx.doi.org/10.1016/0167-2789(90)90087-6
https://doi.org/10.1145/3366424.3391265
https://doi.org/10.1145/3366424.3391265
https://speakerdeck.com/emeij/understanding-news-using-the-bloomberg-knowledge-graph
https://speakerdeck.com/emeij/understanding-news-using-the-bloomberg-knowledge-graph

[88] P. Hitzler and M.K. Sarker. Neuro-symbolic Artificial Intelligence: The State of the
Art. Frontiers in artificial intelligence and applications. IOS Press, 2022. isbn:

9781643682440. url: https://books.google.de/books?id=jnL0zgEACAAJ.

[89] Vinh Thinh Ho et al. “Rule Learning from Knowledge Graphs Guided by Embedding

Models”. In: The Semantic Web – ISWC 2018. Ed. by Denny Vrandecic et al. Cham:

Springer International Publishing, 2018, pp. 72–90. isbn: 978-3-030-00671-6.

[90] SeppHochreiter. “Toward a broad AI”. In:Commun. ACM 65.4 (Mar. 2022), pp. 56–57.

issn: 0001-0782. doi: 10.1145/3512715. url: https://doi.org/10.1145/3512715.

[91] Aidan Hogan et al. “Knowledge Graphs”. In: ACM Computing Surveys 54.4 (July
2021), pp. 1–37. issn: 1557-7341. doi: 10.1145/3447772. url: http://dx.doi.org/

10.1145/3447772.

[92] Alfred Horn. “On Sentences Which Are True of Direct Unions of Algebras”. In:

Journal of Symbolic Logic 16.3 (1951), pp. 216–217. doi: 10.2307/2266412.

[93] Weihua Hu et al. “Open Graph Benchmark: Datasets for Machine Learning on

Graphs”. In: CoRR abs/2005.00687 (2020). arXiv: 2005.00687. url: https://arxiv.

org/abs/2005.00687.

[94] Yuwei Hu et al. “FeatGraph: A Flexible and Efficient Backend for Graph Neural

Network Systems”. In: SC20: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. 2020, pp. 1–13. doi: 10.1109/SC41405.
2020.00075.

[95] Jiani Huang et al. “Scallop: From Probabilistic Deductive Databases to Scalable

Differentiable Reasoning”. In: Advances in Neural Information Processing Systems.
Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc., 2021, pp. 25134–25145.

url: https : / / proceedings . neurips . cc / paper _ files / paper / 2021 / file /

d367eef13f90793bd8121e2f675f0dc2-Paper.pdf.

[96] Cuiying Huo et al. “T2-GNN: graph neural networks for graphs with incomplete

features and structure via teacher-student distillation”. In: Proceedings of the Thirty-
Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on
Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Edu-
cational Advances in Artificial Intelligence. AAAI’23/IAAI’23/EAAI’23. AAAI Press,
2023. isbn: 978-1-57735-880-0. doi: 10 . 1609 / aaai . v37i4 . 25553. url: https :

//doi.org/10.1609/aaai.v37i4.25553.

[97] ICLR. ICLR Reproducibility Challenge. Second Edition, 2019. https://www.cs.mcgill.
ca/~jpineau/ICLR2019-ReproducibilityChallenge.html. Accessed: 2023-01-04.

2019.

[98] ICML. Paper Guidelines. https://icml.cc/Conferences/2023/PaperGuidelines.
Accessed: 2023-01-04. 2023.

[99] IJCAI. Reproducibility guideline. https://ijcai-22.org/reproducibility/. Ac-
cessed: 2023-01-04. 2022.

155

https://books.google.de/books?id=jnL0zgEACAAJ
https://doi.org/10.1145/3512715
https://doi.org/10.1145/3512715
https://doi.org/10.1145/3447772
http://dx.doi.org/10.1145/3447772
http://dx.doi.org/10.1145/3447772
https://doi.org/10.2307/2266412
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://doi.org/10.1109/SC41405.2020.00075
https://doi.org/10.1109/SC41405.2020.00075
https://proceedings.neurips.cc/paper_files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d367eef13f90793bd8121e2f675f0dc2-Paper.pdf
https://doi.org/10.1609/aaai.v37i4.25553
https://doi.org/10.1609/aaai.v37i4.25553
https://doi.org/10.1609/aaai.v37i4.25553
https://www.cs.mcgill.ca/~jpineau/ICLR2019-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2019-ReproducibilityChallenge.html
https://icml.cc/Conferences/2023/PaperGuidelines
https://ijcai-22.org/reproducibility/

Bibliography

[100] Eleni Ilkou and Maria Koutraki. “Symbolic Vs Sub-symbolic AI Methods: Friends or

Enemies?” In: CIKM (Workshops). Ed. by Stefan Conrad and Ilaria Tiddi. Vol. 2699.

CEUR Workshop Proceedings. CEUR-WS.org, 2020. url: http://dblp.uni-trier.

de/db/conf/cikm/cikm2020w.html#IlkouK20.

[101] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015. doi: 10.48550/ARXIV.1502.
03167. url: https://arxiv.org/abs/1502.03167.

[102] Nitisha Jain et al. “Improving Knowledge Graph Embeddings with Ontological Rea-

soning”. In: The Semantic Web – ISWC 2021: 20th International Semantic Web Confer-
ence, ISWC 2021, Virtual Event, October 24–28, 2021, Proceedings. Berlin, Heidelberg:
Springer-Verlag, 2021, pp. 410–426. isbn: 978-3-030-88360-7. doi: 10.1007/978-3-

030-88361-4_24. url: https://doi.org/10.1007/978-3-030-88361-4_24.

[103] Apache Jena. A free and open source Java framework for building Semantic Web
and Linked Data applications. https://jena.apache.org/. The Apache Software
Foundation, Licensed under the Apache Livence, Version 2.0. 2024.

[104] Shaoxiong Ji et al. “A Survey on Knowledge Graphs: Representation, Acquisition,

and Applications”. In: IEEE Transactions on Neural Networks and Learning Systems
33.2 (Feb. 2022), pp. 494–514. issn: 2162-2388. doi: 10.1109/tnnls.2021.3070843.

url: http://dx.doi.org/10.1109/TNNLS.2021.3070843.

[105] Daniel Kahneman. Thinking, fast and slow. New York: Farrar, Straus and Giroux,

2011. isbn: 9780374275631 0374275637. url: https://www.amazon.de/Thinking-

Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=

UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7.

[106] Zoi Kaoudi, Abelardo Carlos Martinez Lorenzo, and Volker Markl. Towards Loosely-
Coupling Knowledge Graph Embeddings and Ontology-based Reasoning. 2022. arXiv:
2202.03173 [cs.AI].

[107] Henry A. Kautz. The third AI summer: AAAI Robert S. Engelmore Memorial Lecture.
https://onlinelibrary.wiley.com/doi/10.1002/aaai.12036. 2022. doi: https:

//doi.org/10.1002/aaai.12036.

[108] Seyed Mehran Kazemi and David Poole. “SimplE Embedding for Link Prediction

in Knowledge Graphs”. In: Advances in Neural Information Processing Systems. Ed.
by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018. url: https://proceedings.

neurips.cc/paper_files/paper/2018/file/b2ab001909a8a6f04b51920306046ce5-

Paper.pdf.

[109] SeyedMehran Kazemi et al. “Representation learning for dynamic graphs: a survey”.

In: J. Mach. Learn. Res. 21.1 (Jan. 2020). issn: 1532-4435.

[110] Mishal Kazmi, Peter Schüller, and Yücel Saygın. “Improving scalability of inductive

logic programming via pruning and best-effort optimisation”. In: Expert Systems
with Applications 87 (Nov. 2017), pp. 291–303. issn: 0957-4174. doi: 10.1016/j.

eswa.2017.06.013. url: http://dx.doi.org/10.1016/j.eswa.2017.06.013.

156

http://dblp.uni-trier.de/db/conf/cikm/cikm2020w.html#IlkouK20
http://dblp.uni-trier.de/db/conf/cikm/cikm2020w.html#IlkouK20
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/ARXIV.1502.03167
https://arxiv.org/abs/1502.03167
https://doi.org/10.1007/978-3-030-88361-4_24
https://doi.org/10.1007/978-3-030-88361-4_24
https://doi.org/10.1007/978-3-030-88361-4_24
https://jena.apache.org/
https://doi.org/10.1109/tnnls.2021.3070843
http://dx.doi.org/10.1109/TNNLS.2021.3070843
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://arxiv.org/abs/2202.03173
https://onlinelibrary.wiley.com/doi/10.1002/aaai.12036
https://doi.org/https://doi.org/10.1002/aaai.12036
https://doi.org/https://doi.org/10.1002/aaai.12036
https://proceedings.neurips.cc/paper_files/paper/2018/file/b2ab001909a8a6f04b51920306046ce5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/b2ab001909a8a6f04b51920306046ce5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/b2ab001909a8a6f04b51920306046ce5-Paper.pdf
https://doi.org/10.1016/j.eswa.2017.06.013
https://doi.org/10.1016/j.eswa.2017.06.013
http://dx.doi.org/10.1016/j.eswa.2017.06.013

[111] Henry J Kelley. “Gradient theory of optimal flight paths”. In: Ars Journal 30.10
(1960), pp. 947–954.

[112] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. “An Algebraic Prolog

for Reasoning about Possible Worlds”. In: Proceedings of the AAAI Conference on
Artificial Intelligence 25.1 (Aug. 2011), pp. 209–214. doi: 10.1609/aaai.v25i1.7852.
url: https://ojs.aaai.org/index.php/AAAI/article/view/7852.

[113] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.

In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and

Yann LeCun. 2015. url: http://arxiv.org/abs/1412.6980.

[114] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph

Convolutional Networks”. In: Proceedings of the 5th International Conference on
Learning Representations (ICLR). ICLR ’17. Palais des Congrès Neptune, Toulon,

France, 2017. url: https://openreview.net/forum?id=SJU4ayYgl.

[115] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph

Convolutional Networks”. In: ICLR. 2017.

[116] E.P. Klement, R. Mesiar, and E. Pap. Triangular Norms. Trends in Logic. Springer

Netherlands, 2013. isbn: 9789401595407. url: https://books.google.fr/books?

id=HXzvCAAAQBAJ.

[117] Erich Peter Klement, Radko Mesiar, and Endre Pap. “Triangular norms. Position

paper III: Continuous t-norms”. In: Fuzzy Sets and Systems 145 (Aug. 2004), pp. 439–
454. doi: 10.1016/S0165-0114(03)00304-X.

[118] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C. 2004. url: http://www.w3.org/TR/2004/REC-rdf-

concepts-20040210/ (visited on 03/15/2015).

[119] Stanley Kok and Pedro Domingos. “Learning the structure of Markov logic net-

works”. In: Proceedings of the 22nd International Conference on Machine Learning.
ICML ’05. Bonn, Germany: Association for Computing Machinery, 2005, pp. 441–

448. isbn: 1595931805. doi: 10.1145/1102351.1102407. url: https://doi.org/10.

1145/1102351.1102407.

[120] Stanley Kok and Pedro Domingos. “Statistical Predicate Invention”. In: Proceed-
ings of the 24th International Conference on Machine Learning. ICML ’07. Corvalis,

Oregon, USA: Association for Computing Machinery, 2007, pp. 433–440. isbn:

9781595937933. doi: 10.1145/1273496.1273551. url: https://doi.org/10.1145/

1273496.1273551.

[121] Bhushan Kotnis and Vivi Nastase. Analysis of the Impact of Negative Sampling on
Link Prediction in Knowledge Graphs. 2018. arXiv: 1708.06816 [cs.AI].

[122] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification

with deep convolutional neural networks”. In: Commun. ACM 60.6 (May 2017),

pp. 84–90. issn: 0001-0782. doi: 10.1145/3065386. url: https://doi.org/10.

1145/3065386.

157

https://doi.org/10.1609/aaai.v25i1.7852
https://ojs.aaai.org/index.php/AAAI/article/view/7852
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://books.google.fr/books?id=HXzvCAAAQBAJ
https://books.google.fr/books?id=HXzvCAAAQBAJ
https://doi.org/10.1016/S0165-0114(03)00304-X
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://doi.org/10.1145/1102351.1102407
https://doi.org/10.1145/1102351.1102407
https://doi.org/10.1145/1102351.1102407
https://doi.org/10.1145/1273496.1273551
https://doi.org/10.1145/1273496.1273551
https://doi.org/10.1145/1273496.1273551
https://arxiv.org/abs/1708.06816
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386

Bibliography

[123] Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. “A Description Logic

Primer”. In: Perspectives on Ontology Learning. Ed. by Jens Lehmann and Johanna

Völker. IOS Press, 2014.

[124] Jonathan Lajus, Luis Galárraga, and Fabian M. Suchanek. “Fast and Exact Rule

Mining with AMIE 3”. In: The Semantic Web 12123 (2020), pp. 36–52. url: https:
//api.semanticscholar.org/CorpusID:211559724.

[125] Jonathan Lajus and Fabian M. Suchanek. “Are All People Married? Determin-

ing Obligatory Attributes in Knowledge Bases”. In: Proceedings of the 2018 World
Wide Web Conference. WWW ’18. Lyon, France: International World Wide Web

Conferences Steering Committee, 2018, pp. 1115–1124. isbn: 9781450356398. doi:

10.1145/3178876.3186010. url: https://doi.org/10.1145/3178876.3186010.

[126] Luis C. Lamb et al. Graph Neural Networks Meet Neural-Symbolic Computing: A
Survey and Perspective. 2021. arXiv: 2003.00330 [cs.AI].

[127] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In:

Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[128] Douglas B. Lenat, Mayank Prakash, and Mary Shepherd. “CYC: Using Common

Sense Knowledge to Overcome Brittleness and Knowledge Acquisition Bottlenecks”.

In: AI Magazine 6.4 (Mar. 1985), p. 65. doi: 10.1609/aimag.v6i4.510. url: https:

//ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/510.

[129] Nicola Leone et al. “The DLV system for knowledge representation and reasoning”.

In: ACM Transactions on Computational Logic 7.3 (July 2006), pp. 499–562. doi:

10.1145/1149114.1149117. url: https://doi.org/10.1145%2F1149114.1149117.

[130] Juanhui Li et al. “Are Message Passing Neural Networks Really Helpful for Knowl-

edge Graph Completion?” In: Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers). Ed. by Anna Rogers,

Jordan Boyd-Graber, and Naoaki Okazaki. Toronto, Canada: Association for Com-

putational Linguistics, July 2023, pp. 10696–10711. doi: 10.18653/v1/2023.acl-

long.597. url: https://aclanthology.org/2023.acl-long.597.

[131] Ziyang Li, Jiani Huang, and Mayur Naik. “Scallop: A Language for Neurosymbolic

Programming”. In: Proc. ACM Program. Lang. 7.PLDI (June 2023). doi: 10.1145/
3591280. url: https://doi.org/10.1145/3591280.

[132] Yankai Lin et al. “Learning Entity and Relation Embeddings for Knowledge Graph

Completion”. In: Proceedings of the AAAI Conference on Artificial Intelligence 29.1
(Feb. 2015). doi: 10.1609/aaai.v29i1.9491. url: https://ojs.aaai.org/index.

php/AAAI/article/view/9491.

[133] Weijie Liu et al. “K-BERT: Enabling Language Representation with Knowledge

Graph”. In: Proceedings of the AAAI Conference on Artificial Intelligence 34.03 (Apr.
2020), pp. 2901–2908. doi: 10.1609/aaai.v34i03.5681. url: https://ojs.aaai.

org/index.php/AAAI/article/view/5681.

[134] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019.
arXiv: 1907.11692.

158

https://api.semanticscholar.org/CorpusID:211559724
https://api.semanticscholar.org/CorpusID:211559724
https://doi.org/10.1145/3178876.3186010
https://doi.org/10.1145/3178876.3186010
https://arxiv.org/abs/2003.00330
https://doi.org/10.1109/5.726791
https://doi.org/10.1609/aimag.v6i4.510
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/510
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/510
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1145%2F1149114.1149117
https://doi.org/10.18653/v1/2023.acl-long.597
https://doi.org/10.18653/v1/2023.acl-long.597
https://aclanthology.org/2023.acl-long.597
https://doi.org/10.1145/3591280
https://doi.org/10.1145/3591280
https://doi.org/10.1145/3591280
https://doi.org/10.1609/aaai.v29i1.9491
https://ojs.aaai.org/index.php/AAAI/article/view/9491
https://ojs.aaai.org/index.php/AAAI/article/view/9491
https://doi.org/10.1609/aaai.v34i03.5681
https://ojs.aaai.org/index.php/AAAI/article/view/5681
https://ojs.aaai.org/index.php/AAAI/article/view/5681
https://arxiv.org/abs/1907.11692

[135] Michael A. Lones. How to avoid machine learning pitfalls: a guide for academic
researchers. https://arxiv.org/abs/2108.02497. Accessed: 2023-01-04. 2023.
arXiv: 2108.02497 [cs.LG].

[136] Qing Lu and Lise Getoor. “Link-Based Classification”. In: Proceedings of the Twen-
tieth International Conference on International Conference on Machine Learning.
ICML’03. Washington, DC, USA: AAAI Press, 2003, pp. 496–503. isbn: 1577351894.

[137] Mario Lucic et al. “Are GANs Created Equal? A Large-Scale Study”. In: Advances
in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran

Associates, Inc., 2018. url: https://proceedings.neurips.cc/paper_files/

paper/2018/file/e46de7e1bcaaced9a54f1e9d0d2f800d-Paper.pdf.

[138] Y. Ma and J. Tang. Graph Neural Networks. In Deep Learning on Graphs. Cambridge:

Cambridge University Press., 2021.

[139] Robin Manhaeve et al. DeepProbLog: Neural Probabilistic Logic Programming. 2018.
doi: 10.48550/ARXIV.1805.10872. url: https://arxiv.org/abs/1805.10872.

[140] Tiina Manninen et al. “Challenges in Reproducibility, Replicability, and Comparabil-

ity of Computational Models and Tools for Neuronal and Glial Networks, Cells, and

Subcellular Structures”. In: Frontiers in Neuroinformatics 12 (2018). issn: 1662-5196.
doi: 10.3389/fninf.2018.00020. url: https://www.frontiersin.org/article/

10.3389/fninf.2018.00020.

[141] Gary Marcus. The Next Decade in AI: Four Steps Towards Robust Artificial Intelligence.
2020. arXiv: 2002.06177 [cs.AI].

[142] Giuseppe Marra et al. “Relational Neural Machines”. In: ECAI 2020 - 24th Euro-
pean Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de
Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference on
Prestigious Applications of Artificial Intelligence (PAIS 2020). Ed. by Giuseppe De

Giacomo et al. Vol. 325. Frontiers in Artificial Intelligence and Applications. IOS

Press, 2020, pp. 1340–1347. doi: 10.3233/FAIA200237. url: https://doi.org/10.

3233/FAIA200237.

[143] Frank Massey. “The Kolmogorov-Smirnov test for goodness of fit”. English. In:

Journal of the American Statistical Association 46.253 (1951), pp. 68–78.

[144] A.K. McCallum. “Automating the construction of internet portals with machine

learning”. In: Information Retrieval 3 (Jan. 2000), pp. 127–163.

[145] Edgar Meij. Understanding News using the Bloomberg Knowledge Graph. Invited talk
at the Big Data Innovators Gathering (TheWebConf). https://www.linkedin.com/
blog/engineering/knowledge/building-the-linkedin-knowledge-graph. 2019.

[146] Christian Meilicke et al. “Anytime Bottom-up Rule Learning for Knowledge Graph

Completion”. In: Proceedings of the 28th International Joint Conference on Artifi-
cial Intelligence. IJCAI’19. Macao, China: AAAI Press, 2019, pp. 3137–3143. isbn:

9780999241141.

[147] Christian Meilicke et al. Reinforced Anytime Bottom Up Rule Learning for Knowledge
Graph Completion. 2020. arXiv: 2004.04412 [cs.AI].

159

https://arxiv.org/abs/2108.02497
https://arxiv.org/abs/2108.02497
https://proceedings.neurips.cc/paper_files/paper/2018/file/e46de7e1bcaaced9a54f1e9d0d2f800d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/e46de7e1bcaaced9a54f1e9d0d2f800d-Paper.pdf
https://doi.org/10.48550/ARXIV.1805.10872
https://arxiv.org/abs/1805.10872
https://doi.org/10.3389/fninf.2018.00020
https://www.frontiersin.org/article/10.3389/fninf.2018.00020
https://www.frontiersin.org/article/10.3389/fninf.2018.00020
https://arxiv.org/abs/2002.06177
https://doi.org/10.3233/FAIA200237
https://doi.org/10.3233/FAIA200237
https://doi.org/10.3233/FAIA200237
https://www.linkedin.com/blog/engineering/knowledge/building-the-linkedin-knowledge-graph
https://www.linkedin.com/blog/engineering/knowledge/building-the-linkedin-knowledge-graph
https://arxiv.org/abs/2004.04412

Bibliography

[148] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their

Compositionality”. In: Advances in Neural Information Processing Systems. Ed. by
C.J. Burges et al. Vol. 26. Curran Associates, Inc., 2013. url: https://proceedings.

neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

[149] George A. Miller. “WordNet: A Lexical Database for English”. In: Commun. ACM
38.11 (Nov. 1995), pp. 39–41. issn: 0001-0782. doi: 10.1145/219717.219748. url:

https://doi.org/10.1145/219717.219748.

[150] Tim Miller. Explanation in Artificial Intelligence: Insights from the Social Sciences.
2018. arXiv: 1706.07269 [cs.AI].

[151] Sameh K. Mohamed et al. “Loss Functions in Knowledge Graph EmbeddingModels”.

In: DL4KG@ESWC. 2019. url: https://api.semanticscholar.org/CorpusID:
186206474.

[152] Salman Mohammed, Peng Shi, and Jimmy Lin. “Strong Baselines for Simple Ques-

tion Answering over Knowledge Graphs with and without Neural Networks”.

In: Proceedings of the 2018 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers). Ed. by Marilyn Walker, Heng Ji, and Amanda Stent. New Orleans,

Louisiana: Association for Computational Linguistics, June 2018, pp. 291–296. doi:

10.18653/v1/N18-2047. url: https://aclanthology.org/N18-2047.

[153] Stephen Muggleton and Luc de Raedt. “Inductive Logic Programming: Theory

and methods”. In: The Journal of Logic Programming 19-20 (1994). Special Issue:

Ten Years of Logic Programming, pp. 629–679. issn: 0743-1066. doi: https://doi.

org/10.1016/0743-1066(94)90035-3. url: https://www.sciencedirect.com/

science/article/pii/0743106694900353.

[154] NeurIPS. Reproducibility Challenge @ NeurIPS 2019. The Annual Machine Learning
Reproducibility Challenge. https://reproducibility- challenge.github.io/
neurips2019/. Accessed: 2023-01-04. 2019.

[155] Dai Quoc Nguyen et al. “A Novel Embedding Model for Knowledge Base Comple-

tion Based on Convolutional Neural Network”. In: Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers). Ed. by Marilyn Walker,

Heng Ji, and Amanda Stent. New Orleans, Louisiana: Association for Computa-

tional Linguistics, June 2018, pp. 327–333. doi: 10.18653/v1/N18- 2053. url:

https://aclanthology.org/N18-2053.

[156] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. “Holographic embed-

dings of knowledge graphs”. In: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press, 2016, pp. 1955–1961.

[157] Maximilian Nickel et al. “A Review of Relational Machine Learning for Knowledge

Graphs”. In: Proceedings of the IEEE 104.1 (Jan. 2016), pp. 11–33. issn: 1558-2256.

doi: 10.1109/jproc.2015.2483592. url: http://dx.doi.org/10.1109/JPROC.

2015.2483592.

160

https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://arxiv.org/abs/1706.07269
https://api.semanticscholar.org/CorpusID:186206474
https://api.semanticscholar.org/CorpusID:186206474
https://doi.org/10.18653/v1/N18-2047
https://aclanthology.org/N18-2047
https://doi.org/https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/https://doi.org/10.1016/0743-1066(94)90035-3
https://www.sciencedirect.com/science/article/pii/0743106694900353
https://www.sciencedirect.com/science/article/pii/0743106694900353
https://reproducibility-challenge.github.io/neurips2019/
https://reproducibility-challenge.github.io/neurips2019/
https://doi.org/10.18653/v1/N18-2053
https://aclanthology.org/N18-2053
https://doi.org/10.1109/jproc.2015.2483592
http://dx.doi.org/10.1109/JPROC.2015.2483592
http://dx.doi.org/10.1109/JPROC.2015.2483592

[158] Natasha Noy et al. “Industry-scale Knowledge Graphs: Lessons and Challenges”.

In: Communications of the ACM 62 (8) (2019), pp. 36–43. url: https://cacm.acm.

org/magazines/2019/8/238342-industry-scale-knowledge-graphs/fulltext.

[159] Simon Ott, Christian Meilicke, and Matthias Samwald. SAFRAN: An interpretable,
rule-based link prediction method outperforming embedding models. 2021. arXiv:
2109.08002 [cs.AI].

[160] PapersWithCode. Node Classification. https://paperswithcode.com/task/node-
classification. Leaderboards. Accessed: 2023-01-04. 2023.

[161] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library”. In: Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/

9015 - pytorch - an - imperative - style - high - performance - deep - learning -

library.pdf.

[162] Hung Viet Pham et al. “Problems and Opportunities in Training Deep Learning

Software Systems: An Analysis of Variance”. In: Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. ASE ’20. Virtual

Event, Australia: Association for Computing Machinery, 2021, pp. 771–783. isbn:

9781450367684. doi: 10.1145/3324884.3416545. url: https://doi.org/10.1145/

3324884.3416545.

[163] Gabriele Piantadosi, Stefano Marrone, and Carlo Sansone. On Reproducibility of
Deep Convolutional Neural Networks Approaches. 2019.

[164] Joelle Pineau et al. “Improving Reproducibility in Machine Learning Research (A

Report from the NeurIPS 2019 Reproducibility Program)”. In: Journal of machine
learning research 22.164 (2021), pp. 1–20. url: https://jmlr.org/papers/v22/20-

303.html.

[165] Hans Plesser. “Reproducibility vs. replicability: a brief history of a confused ter-

minology”. In: Frontiers in neuroinformatics 11 (2018). doi: 10.3389/fninf.2017.
00076.

[166] PyTorch. Reproducibility. https://pytorch.org/docs/stable/notes/randomness.
html. Accessed: 2023-01-04. 2022.

[167] Meng Qu and Jian Tang. “Probabilistic Logic Neural Networks for Reasoning”. In:

Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.

Curran Associates, Inc., 2019. url: https://proceedings.neurips.cc/paper_

files/paper/2019/file/13e5ebb0fa112fe1b31a1067962d74a7-Paper.pdf.

[168] Meng Qu et al. “{RNNL}ogic: Learning Logic Rules for Reasoning on Knowledge

Graphs”. In: International Conference on Learning Representations. 2021.

[169] Edward Raff. “A Step Toward Quantifying Independently Reproducible Machine

Learning Research”. In: Advances in Neural Information Processing Systems. Ed. by
H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019. url: https://proceedings.

neurips.cc/paper_files/paper/2019/file/c429429bf1f2af051f2021dc92a8ebea-

Paper.pdf.

161

https://cacm.acm.org/magazines/2019/8/238342-industry-scale-knowledge-graphs/fulltext
https://cacm.acm.org/magazines/2019/8/238342-industry-scale-knowledge-graphs/fulltext
https://arxiv.org/abs/2109.08002
https://paperswithcode.com/task/node-classification
https://paperswithcode.com/task/node-classification
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1145/3324884.3416545
https://doi.org/10.1145/3324884.3416545
https://jmlr.org/papers/v22/20-303.html
https://jmlr.org/papers/v22/20-303.html
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.3389/fninf.2017.00076
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/13e5ebb0fa112fe1b31a1067962d74a7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/13e5ebb0fa112fe1b31a1067962d74a7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c429429bf1f2af051f2021dc92a8ebea-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c429429bf1f2af051f2021dc92a8ebea-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c429429bf1f2af051f2021dc92a8ebea-Paper.pdf

Bibliography

[170] Simon Razniewski et al. “Completeness, Recall, and Negation in Open-world Knowl-

edge Bases: A Survey”. In: ACM Comput. Surv. 56.6 (Feb. 2024). issn: 0360-0300.
doi: 10.1145/3639563. url: https://doi.org/10.1145/3639563.

[171] Hongyu Ren et al. Neural Graph Reasoning: Complex Logical Query Answering Meets
Graph Databases. 2023. arXiv: 2303.14617 [cs.DB].

[172] Matthew Richardson and Pedro Domingos. “Markov Logic Networks”. In: Machine
Learning 62 (Feb. 2006), pp. 107–136. doi: 10.1007/s10994-006-5833-1.

[173] Andrea Rossi et al. “Knowledge Graph Embedding for Link Prediction: A Compar-

ative Analysis”. In: ACM Transactions on Knowledge Discovery from Data 15.2 (Jan.
2021), pp. 1–49. issn: 1556-472X. doi: 10.1145/3424672. url: http://dx.doi.org/

10.1145/3424672.

[174] Nicolas P. Rougier et al. “Sustainable computational science: the ReScience initia-

tive”. In: PeerJ Computer Science 3 (Dec. 2017), e142. doi: 10.7717/peerj-cs.142.

[175] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A Survey on
Oversmoothing in Graph Neural Networks. 2023. arXiv: 2303.10993 [cs.LG].

[176] Ali Sadeghian et al. “DRUM: End-To-End Differentiable Rule Mining On Knowledge

Graphs”. In: Advances in Neural Information Processing Systems. Ed. by H. Wallach

et al. Vol. 32. Curran Associates, Inc., 2019. url: https://proceedings.neurips.

cc/paper_files/paper/2019/file/0c72cb7ee1512f800abe27823a792d03-Paper.

pdf.

[177] Sherif Sakr et al. “The future is big graphs: a community view on graph processing

systems”. In: Communications of the ACM 64.9 (Aug. 2021), pp. 62–71. issn: 1557-

7317. doi: 10.1145/3434642. url: http://dx.doi.org/10.1145/3434642.

[178] Tian Sang, Paul Bearne, and Henry Kautz. “Performing Bayesian inference by

weighted model counting”. In: Proceedings of the 20th National Conference on Artifi-
cial Intelligence - Volume 1. AAAI 05. Pittsburgh, Pennsylvania: AAAI Press, 2005,
pp. 475–481. isbn: 157735236x.

[179] Md Kamruzzaman Sarker et al.Neuro-Symbolic Artificial Intelligence: Current Trends.
2021. arXiv: 2105.05330 [cs.AI].

[180] Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE Transactions
on Neural Networks 20.1 (2009), pp. 61–80. doi: 10.1109/TNN.2008.2005605.

[181] Michael Schlichtkrull et al. “Modeling Relational Data with Graph Convolutional

Networks”. In: The Semantic Web. Ed. by Aldo Gangemi et al. Cham: Springer

International Publishing, 2018, pp. 593–607. isbn: 978-3-319-93417-4.

[182] Oleksandr Shchur et al. “Pitfalls of Graph Neural Network Evaluation”. In: CoRR
abs/1811.05868 (2018). arXiv: 1811.05868. url: http://arxiv.org/abs/1811.

05868.

[183] Amit Singhal. Introducing the Knowledge Graph: things, not strings. https://blog.
google/products/search/introducing-knowledge-graph-things-not/. May

2012.

162

https://doi.org/10.1145/3639563
https://doi.org/10.1145/3639563
https://arxiv.org/abs/2303.14617
https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.1145/3424672
http://dx.doi.org/10.1145/3424672
http://dx.doi.org/10.1145/3424672
https://doi.org/10.7717/peerj-cs.142
https://arxiv.org/abs/2303.10993
https://proceedings.neurips.cc/paper_files/paper/2019/file/0c72cb7ee1512f800abe27823a792d03-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/0c72cb7ee1512f800abe27823a792d03-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/0c72cb7ee1512f800abe27823a792d03-Paper.pdf
https://doi.org/10.1145/3434642
http://dx.doi.org/10.1145/3434642
https://arxiv.org/abs/2105.05330
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/

[184] Koustuv Sinha et al. CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from
Text. 2019. arXiv: 1908.06177.

[185] Koustuv Sinha et al. “ML Reproducibility Challenge 2021”. In: ReScience C 8.#48 (2

2022). doi: 10.5281/zenodo.6574723.

[186] Evren Sirin et al. “Pellet: A practical OWL-DL reasoner”. In: Journal of Web Se-
mantics 5.2 (2007). Software Engineering and the Semantic Web, pp. 51–53. issn:

1570-8268. doi: https://doi.org/10.1016/j.websem.2007.03.004. url: https:

//www.sciencedirect.com/science/article/pii/S1570826807000169.

[187] Richard Socher et al. “Reasoning With Neural Tensor Networks for Knowledge

Base Completion”. In: Advances in Neural Information Processing Systems. Ed. by
C.J. Burges et al. Vol. 26. Curran Associates, Inc., 2013. url: https://proceedings.

neurips.cc/paper_files/paper/2013/file/b337e84de8752b27eda3a12363109e80-

Paper.pdf.

[188] Zhiqing Sun et al. RotatE: Knowledge Graph Embedding by Relational Rotation in
Complex Space. 2019. arXiv: 1902.10197 [cs.LG].

[189] Zachary Susskind et al. Neuro-Symbolic AI: An Emerging Class of AI Workloads and
their Characterization. 2021. arXiv: 2109.06133 [cs.AI].

[190] Zachary Susskind et al. “Neuro-Symbolic AI: An Emerging Class of AI Workloads

and their Characterization”. In: CoRR abs/2109.06133 (2021). arXiv: 2109.06133.

url: https://arxiv.org/abs/2109.06133.

[191] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek. “YAGO 4: A

Reason-able Knowledge Base”. In: The Semantic Web 12123 (2020), pp. 583–596.

[192] Yuandong Tian et al. ELF OpenGo: An Analysis and Open Reimplementation of
AlphaZero. 2022. arXiv: 1902.04522 [cs.AI].

[193] Kristina Toutanova et al. “Representing Text for Joint Embedding of Text and

Knowledge Bases”. In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Ed. by Lluis Marquez, Chris Callison-Burch, and

Jian Su. Lisbon, Portugal: Association for Computational Linguistics, Sept. 2015,

pp. 1499–1509. doi: 10.18653/v1/D15-1174. url: https://aclanthology.org/D15-

1174.

[194] Théo Trouillon et al. “Complex Embeddings for Simple Link Prediction”. In: Pro-
ceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48. ICML’16. New York, NY, USA: JMLR.org, 2016, pp. 2071–2080.

[195] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc.,

2017. url: https://proceedings.neurips.cc/paper_files/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[196] Petar Veličković et al. “Graph Attention Networks”. In: International Conference on
Learning Representations. 2018.

163

https://arxiv.org/abs/1908.06177
https://doi.org/10.5281/zenodo.6574723
https://doi.org/https://doi.org/10.1016/j.websem.2007.03.004
https://www.sciencedirect.com/science/article/pii/S1570826807000169
https://www.sciencedirect.com/science/article/pii/S1570826807000169
https://proceedings.neurips.cc/paper_files/paper/2013/file/b337e84de8752b27eda3a12363109e80-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/b337e84de8752b27eda3a12363109e80-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/b337e84de8752b27eda3a12363109e80-Paper.pdf
https://arxiv.org/abs/1902.10197
https://arxiv.org/abs/2109.06133
https://arxiv.org/abs/2109.06133
https://arxiv.org/abs/2109.06133
https://arxiv.org/abs/1902.04522
https://doi.org/10.18653/v1/D15-1174
https://aclanthology.org/D15-1174
https://aclanthology.org/D15-1174
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Bibliography

[197] Deepak Venugopal and Vibhav G Gogate. “Scaling-up Importance Sampling for

Markov Logic Networks”. In: Advances in Neural Information Processing Systems.
Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates, Inc., 2014.

[198] Hongwei Wang et al. DKN: Deep Knowledge-Aware Network for News Recommenda-
tion. 2018. arXiv: 1801.08284 [stat.ML].

[199] Jie Wang et al. “GUIDE: Training Deep Graph Neural Networks via Guided Dropout

Over Edges”. In: IEEE Transactions on Neural Networks and Learning Systems (2022),
pp. 1–13. doi: 10.1109/TNNLS.2022.3172879.

[200] Kuansan Wang et al. “Microsoft Academic Graph: When experts are not enough”.

In: Quantitative Science Studies 1 (Jan. 2020), pp. 1–18. doi: 10.1162/qss_a_00021.

[201] Quan Wang et al. “Knowledge Graph Embedding: A Survey of Approaches and

Applications”. In: IEEE Transactions on Knowledge and Data Engineering 29.12

(2017), pp. 2724–2743. doi: 10.1109/TKDE.2017.2754499.

[202] William Yang Wang, Kathryn Mazaitis, and William W. Cohen. “Programming

with personalized pagerank: a locally groundable first-order probabilistic logic”. In:

Proceedings of the 22nd ACM International Conference on Information & Knowledge
Management. CIKM ’13. San Francisco, California, USA: Association for Computing

Machinery, 2013, pp. 2129–2138. isbn: 9781450322638. doi: 10.1145/2505515.

2505573. url: https://doi.org/10.1145/2505515.2505573.

[203] Xiao Wang et al. “Heterogeneous Graph Attention Network”. In: The World Wide
Web Conference. WWW ’19. San Francisco, CA, USA: Association for Computing

Machinery, 2019, pp. 2022–2032. isbn: 9781450366748. doi: 10.1145/3308558.

3313562. url: https://doi.org/10.1145/3308558.3313562.

[204] Zhen Wang et al. “Knowledge Graph Embedding by Translating on Hyperplanes”.

In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.
AAAI’14. Québec City, Québec, Canada: AAAI Press, 2014, pp. 1112–1119.

[205] Web Ontology Language (OWL). https://www.w3.org/OWL/. Accessed: 2023-03-20.

[206] Luisa Werner. “Neuro-Symbolic Integration for Reasoning and Learning on Knowl-

edge Graphs”. In: Proceedings of the AAAI Conference on Artificial Intelligence 38.21
(Mar. 2024), pp. 23429–23430. doi: 10.1609/aaai.v38i21.30415. url: https:

//ojs.aaai.org/index.php/AAAI/article/view/30415.

[207] Luisa Werner et al. “Knowledge Enhanced Graph Neural Networks”. In: 2023 IEEE
10th International Conference on Data Science and Advanced Analytics (DSAA). 2023,
pp. 1–10. doi: 10.1109/DSAA60987.2023.10302495.

[208] Luisa Werner et al. “Reproduce, Replicate, Reevaluate. The Long but Safe Way to

Extend Machine Learning Methods”. In: Proceedings of the AAAI Conference on
Artificial Intelligence 38.14 (Mar. 2024), pp. 15850–15858. doi: 10.1609/aaai.v38i14.

29515. url: https://ojs.aaai.org/index.php/AAAI/article/view/29515.

164

https://arxiv.org/abs/1801.08284
https://doi.org/10.1109/TNNLS.2022.3172879
https://doi.org/10.1162/qss_a_00021
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1145/2505515.2505573
https://doi.org/10.1145/2505515.2505573
https://doi.org/10.1145/2505515.2505573
https://doi.org/10.1145/3308558.3313562
https://doi.org/10.1145/3308558.3313562
https://doi.org/10.1145/3308558.3313562
https://www.w3.org/OWL/
https://doi.org/10.1609/aaai.v38i21.30415
https://ojs.aaai.org/index.php/AAAI/article/view/30415
https://ojs.aaai.org/index.php/AAAI/article/view/30415
https://doi.org/10.1109/DSAA60987.2023.10302495
https://doi.org/10.1609/aaai.v38i14.29515
https://doi.org/10.1609/aaai.v38i14.29515
https://ojs.aaai.org/index.php/AAAI/article/view/29515

[209] Robert West et al. “Knowledge base completion via search-based question answer-

ing”. In: Proceedings of the 23rd International Conference on World Wide Web. WWW

’14. Seoul, Korea: Association for Computing Machinery, 2014, pp. 515–526. isbn:

9781450327442. doi: 10.1145/2566486.2568032. url: https://doi.org/10.1145/

2566486.2568032.

[210] Wikidata. https://www.wikidata.org. Accessed: 2023-03-20.

[211] FeiWu andDaniel S.Weld. “Automatically refining thewikipedia infobox ontology”.

In: Proceedings of the 17th International Conference on World Wide Web. WWW ’08.

Beijing, China: Association for Computing Machinery, 2008, pp. 635–644. isbn:

9781605580852. doi: 10.1145/1367497.1367583. url: https://doi.org/10.1145/

1367497.1367583.

[212] Lingfei Wu et al. Graph Neural Networks: Foundations, Frontiers, and Applications.
Singapore: Springer Singapore, 2022, p. 725.

[213] Yujun Yan et al. Two Sides of the Same Coin: Heterophily and Oversmoothing in
Graph Convolutional Neural Networks. 2022. arXiv: 2102.06462 [cs.LG].

[214] Bishan Yang et al. Embedding Entities and Relations for Learning and Inference in
Knowledge Bases. 2015. arXiv: 1412.6575 [cs.CL].

[215] Dingqi Yang et al. “Fast and Slow Thinking: A Two-Step Schema-Aware Approach

for Instance Completion in Knowledge Graphs”. In: IEEE Trans. on Knowl. and Data
Eng. 36.3 (Aug. 2023), pp. 1113–1129. issn: 1041-4347. doi: 10.1109/TKDE.2023.
3304137. url: https://doi.org/10.1109/TKDE.2023.3304137.

[216] Haotong Yang, Zhouchen Lin, and Muhan Zhang. Rethinking Knowledge Graph
Evaluation Under the Open-World Assumption. 2022. arXiv: 2209.08858 [cs.AI].

[217] Xiaocheng Yang et al. Simple and Efficient Heterogeneous Graph Neural Network.
https://arxiv.org/abs/2207.02547. 2022. doi: 10.48550/ARXIV.2207.02547.

[218] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. “Revisiting Semi-

Supervised Learning with Graph Embeddings”. In: Proceedings of the 33rd Inter-
national Conference on International Conference on Machine Learning - Volume 48.
ICML’16. New York, NY, USA: JMLR.org, 2016, pp. 40–48.

[219] Rex Ying et al. “Graph Convolutional Neural Networks for Web-Scale Recom-

mender Systems”. In: Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. KDD ’18. London, United Kingdom: As-

sociation for Computing Machinery, 2018, pp. 974–983. isbn: 9781450355520. doi:

10.1145/3219819.3219890. url: https://doi.org/10.1145/3219819.3219890.

[220] L.A. Zadeh. “Fuzzy logic”. In: Computer 21.4 (1988), pp. 83–93. doi: 10.1109/2.53.

[221] Hanqing Zeng et al. “GraphSAINT: Graph Sampling Based Inductive Learning

Method”. In: International Conference on Learning Representations. 2020.

[222] Zefan Zeng, Qing Cheng, and Yuehang Si. “Logical Rule-Based Knowledge Graph

Reasoning: A Comprehensive Survey”. In:Mathematics 11.21 (2023). issn: 2227-7390.
doi: 10.3390/math11214486. url: https://www.mdpi.com/2227-7390/11/21/4486.

165

https://doi.org/10.1145/2566486.2568032
https://doi.org/10.1145/2566486.2568032
https://doi.org/10.1145/2566486.2568032
https://www.wikidata.org
https://doi.org/10.1145/1367497.1367583
https://doi.org/10.1145/1367497.1367583
https://doi.org/10.1145/1367497.1367583
https://arxiv.org/abs/2102.06462
https://arxiv.org/abs/1412.6575
https://doi.org/10.1109/TKDE.2023.3304137
https://doi.org/10.1109/TKDE.2023.3304137
https://doi.org/10.1109/TKDE.2023.3304137
https://arxiv.org/abs/2209.08858
https://arxiv.org/abs/2207.02547
https://doi.org/10.48550/ARXIV.2207.02547
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1109/2.53
https://doi.org/10.3390/math11214486
https://www.mdpi.com/2227-7390/11/21/4486

Bibliography

[223] Chuxu Zhang et al. “Heterogeneous Graph Neural Network”. In: Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. KDD ’19. Anchorage, AK, USA: Association for Computing Machinery,

2019, pp. 793–803. isbn: 9781450362016. doi: 10.1145/3292500.3330961. url:

https://doi.org/10.1145/3292500.3330961.

[224] Fuzheng Zhang et al. “Collaborative Knowledge Base Embedding for Recommender

Systems”. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’16. San Francisco, California, USA:

Association for ComputingMachinery, 2016, pp. 353–362. isbn: 9781450342322. doi:

10.1145/2939672.2939673. url: https://doi.org/10.1145/2939672.2939673.

[225] Hanwang Zhang et al. “Visual Translation Embedding Network for Visual Relation

Detection”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017, pp. 3107–3115. doi: 10.1109/CVPR.2017.331.

[226] Jing Zhang et al. “Neural, symbolic and neural-symbolic reasoning on knowledge

graphs”. In: AI Open 2 (2021), pp. 14–35. issn: 2666-6510. doi: https://doi.org/10.
1016/j.aiopen.2021.03.001. url: https://www.sciencedirect.com/science/

article/pii/S2666651021000061.

[227] Shuai Zhang et al. “Quaternion Knowledge Graph Embeddings”. In: Proceedings
of the 33rd International Conference on Neural Information Processing Systems. Red
Hook, NY, USA: Curran Associates Inc., 2019.

[228] Yongqi Zhang, Quanming Yao, and Lei Chen. Efficient, Simple and Automated Neg-
ative Sampling for Knowledge Graph Embedding. 2021. arXiv: 2010.14227 [cs.LG].

[229] Yongqi Zhang et al. NSCaching: Simple and Efficient Negative Sampling for Knowl-
edge Graph Embedding. 2019. arXiv: 1812.06410 [cs.AI].

[230] Zhengyan Zhang et al. “ERNIE: Enhanced Language Representation with Infor-

mative Entities”. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Ed. by Anna Korhonen, David Traum, and Lluis Marquez.

Florence, Italy: Association for Computational Linguistics, July 2019, pp. 1441–1451.

doi: 10.18653/v1/P19-1139. url: https://aclanthology.org/P19-1139.

[231] Ziwei Zhang, Peng Cui, andWenwu Zhu. “Deep Learning on Graphs: A Survey”. In:

IEEE Trans. on Knowl. and Data Eng. 34.1 (Jan. 2022), pp. 249–270. issn: 1041-4347.
doi: 10.1109/TKDE.2020.2981333. url: https://doi.org/10.1109/TKDE.2020.

2981333.

166

https://doi.org/10.1145/3292500.3330961
https://doi.org/10.1145/3292500.3330961
https://doi.org/10.1145/2939672.2939673
https://doi.org/10.1145/2939672.2939673
https://doi.org/10.1109/CVPR.2017.331
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.03.001
https://doi.org/https://doi.org/10.1016/j.aiopen.2021.03.001
https://www.sciencedirect.com/science/article/pii/S2666651021000061
https://www.sciencedirect.com/science/article/pii/S2666651021000061
https://arxiv.org/abs/2010.14227
https://arxiv.org/abs/1812.06410
https://doi.org/10.18653/v1/P19-1139
https://aclanthology.org/P19-1139
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333
https://doi.org/10.1109/TKDE.2020.2981333

A. Appendix

A.1. Experimental Details of Knowledge Enhancement of
Graph Neural Networks

The training of KeGNN involves a set of hyperparameters. Batch normalization [101] is

applied after each hidden layer of the GNN. The Adam optimizer [113] is used as optimizer

for all models. Concerning the hyperparameters specific to the knowledge enhancement

layers, the initialization of the preactivations of the binary predicates (which are assumed

to be known) is taken as a hyperparameter. They are set to a high positive value for

edges that are known to exist and correspond to the grounding of the binary predicate.

Furthermore, different initializations of clause weights and constraints on them are tested.

Moreover, the number of stacked knowledge enhancement layers is a hyperparameter. We

further allow the model to randomly neglect a proportion of edges by setting an edges

drop rate parameter. Further, we test whether the normalization of the edges with the

diagonal matrix D̃ =
∑
𝑗 Ã𝑖, 𝑗 (with Ã = A + I) is helpful.

To find a suitable set hyperparameters for each dataset and model, we perform a random

search with up to 800 runs and 48h time limit and choose the parameter combination

which leads to the highest accuracy on the validation set. The hyperparameter tuning is

executed in Weights and Biases [22]. A random search is conducted over the following

hyperparameter values and ranges.

• Adam optimizer parameters: 𝛽1: 0.9, 𝛽2: 0.99, 𝜖 : 1e-07

• Attention heads: {1, 2, 3, 4, 6, 8, 10}

• Batch size: {128, 512, 1024, 2048, full batch}

• Binary preactivation: {0.5, 1.0, 10.0, 100.0, 500.0}

• Clause weights initialization: {0.001, 0.1, 0.25, 0.5, random uniform distribution on [0,1)}

• Dropout rate: 0.5

• Edges drop rate: random uniform distribution [0.0, 0.9]

• Edge normalization: {true, false}

• Early stopping: 𝛿𝑚𝑖𝑛 : 0.001, patience: {1, 10, 100}

• Hidden layer dimension: {32, 64, 128, 256}

• Learning rate: random uniform distribution [0.0001, 0.1]

• Clause weight clipping: 𝑤𝑚𝑖𝑛 : 0.0,𝑤𝑚𝑎𝑥 : random uniform distribution: [0.8, 500.0]

167

A. Appendix

• Number of knowledge enhancement layers:

{1, 2, 3, 4, 5, 6}

• Number of hidden layers: {2, 3, 4, 5, 6}

• Number of epochs 200 (unless training stopped early)

The obtained parameter combinations for the models KeMLP, KeGCN and KeGAT for

Cora, Citeseer, PubMed and Flickr are displayed in Table A.1 and in Table A.2. We set the

random seed for all experiments to 1234. The reference models MLP, GCN and GAT are

trained with the same parameter set as the respective knowledge enhanced models.

PubMed Flickr
Parameter KeMLP KeGCN KeGAT KeMLP KeGCN KeGAT
adam 𝛽1 0.9 0.9 0.9 0.9 0.9 0.9

adam 𝛽2 0.99 0.99 0.99 0.99 0.99 0.99

adam 𝜖 1e-07 1e-07 1e-07 1e-07 1e-07 1e-07

attention heads - - 8 - - 8

batch size 1024 full batch 1024 128 1024 2048

binary preactivation 10.0 1.0 10.0 10.0 500.0 500.0

clause weight initialization 0.001 random 0.5 0.001 0.001 0.1

dropout rate 0.5 0.5 0.5 0.5 0.5 0.5

edges drop rate 0.22 0.66 0.07 0.2 0.24 0.12

epochs 200 200 200 200 200 200

early stopping enabled true true true true true true

early stopping min delta 0.001 0.001 0.001 0.001 0.001 0.001

early stopping patience 100 10 10 10 10 100

hidden channels 256 256 256 32 128 64

learning rate 0.057 0.043 0.016 0.001 0.016 0.0039

max clause weight 350.0 322.0 118.0 55.0 135 113.0

min clause weight 0.0 0.0 0.0 0.0 0 0.0

normalize edges false false true true true false

KE layers 2 1 5 1 4 1

hidden layers 4 2 2 2 4 3

runs 50 50 50 10 10 10

seed 1234 1234 1234 1234 1234 1234

Table A.1.: KeGNN. Hyperparameter for PubMed and Flickr

A.2. Experimental Details of Knowledge Enhancement on
Large-Scale Graphs

The hyperparameters used for the experiments on ogbn-arxiv in Chapter 7 are listed in

Table A.3 for full-batch training. The hyperparameters for the experiments with RNS on

ogbn-arxiv and ogbn-products are summarised in Table A.4 and Table A.5.

168

A.2. Experimental Details of Knowledge Enhancement on Large-Scale Graphs

Cora CiteSeer
Parameter KeMLP KeGCN KeGAT KeMLP KeGCN KeGAT
adam 𝛽1 0.9 0.9 0.9 0.9 0.9 0.9

adam 𝛽2 0.99 0.99 0.99 0.99 0.99 0.99

adam 𝜖 1e-07 1e-07 1e-07 1e-07 1e-07 1e-07

attention heads - - 1 - - 3

batch size 512 512 full batch 128 full batch 1024

binary preactivation 10.0 500.0 1.0 10.0 0.5 0.5

clause weight initialization 0.5 random 0.5 0.5 0.25 0.1

dropout rate 0.5 0.5 0.5 0.5 0.5 0.5

edges drop rate 0.47 0.17 0.27 0.01 0.35 0.88

epochs 200 200 200 200 200 200

early stopping enabled true true true true true true

early stopping min delta 0.001 0.001 0.001 0.001 0.001 0.001

early stopping patience 1 1 10 10 10 10

hidden channels 32 256 64 256 128 32

learning rate 0.026 0.032 0.033 0.028 0.037 0.006

max clause weight 104.0 254.0 250.0 34.0 243.0 110.0

min clause weight 0.0 0.0 0.0 0.0 0.0 0.0

normalize edges true false true true false true

KE layers 4 2 1 1 3 2

Hidden layers 2 2 2 2 5 2

runs 50 50 50 50 50 50

seed 1234 1234 1234 1234 1234 1234

Table A.2.: KeGNN. Hyperparameters for Citeseer and Cora

Parameters of Full-batch Training on ogbn-arxiv
Parameter MLP GCN KE𝐺𝐶𝑁 KE𝑀𝐿𝑃

Binary preactivation 500.0 500.0 500.0 500.0

Dropout 0.5 0.5 0.5 0.5

Epochs 600 600 600 600

Early stopping enabled True True True True

Early stopping 𝛿 0.001 0.001 0.001 0.001

Early stopping Patience 10 10 10 10

Evaluation steps 10 10 10 10

Hidden layer dimension 256 256 256 256

Learning rate 0.01 0.01 0.01 0.01

Number of knowledge en-

hancement layers

- - 3 3

Number of hidden layers 3 3 3 3

Number of runs 10 10 10 10

Table A.3.: Hyperparameters for Full-batch Training on ogbn-arxiv

169

A. Appendix

RNS on ogbn-arxiv
Parameter MLP GCN KE𝐺𝐶𝑁 KE𝑀𝐿𝑃

Batch size 10000 10000 10000 10000

Sampling depth 𝜏 - 3 3 3

Neighbor sampling size 𝜌 - 10 10 10

Binary preactivation 500.0 500.0 500.0 500.0

Dropout 0.5 0.5 0.5 0.5

Epochs 300 100 100 300

Early stopping snabled True True True True

Early stopping 𝛿 0.001 0.001 0.001 0.001

Early stopping patience 10 10 10 10

Evaluation steps 10 10 10 10

Hidden layer dimension 256 256 256 256

Initialisation of clause weights - - 0.5 0.5

Initialisation of GCN layers - random (glorot) - random (glorot)

Initialisation of linear layers random uniform random uniform random uniform random uniform

Learning rate 0.01 0.01 0.01 0.01

Number of knowledge enhance-

ment layers

- - 3 3

Number of hidden layers (base

neural network)

3 3 3 3

Runs 10 10 10 10

Table A.4.: Hyperparameters for RNS Training on ogbn-arxiv

RNS on ogbn-products
Parameter MLP GCN KE𝐺𝐶𝑁 KE𝑀𝐿𝑃

Batch size 10.000 10.000 10.000 10.000

Sampling depth 𝜏 - 1 1 1

Neigbhor sampling sxize 𝜌 - 10 10 10

Binary preactivation 500.0 500.0 500.0 500.0

Dropout 0.5 0.5 0.5 0.5

Epochs 300 300 300 300

Early stopping enabled True True True True

Early stopping 𝛿 0.001 0.001 0.001 0.001

Early stopping patience 10 10 10 10

Evaluation steps 10 10 10 10

Hidden layer dimension 256 256 256 256

Initialisation of clause weights - - 0.5 0.5

Initialisation of GCN layers - random (glorot) - random (glorot)

Initialisation of linear layers random uniform random uniform random uniform random uniform

Learning rate 0.01 0.01 0.01 0.01

Number of knowledge enhance-

ment layers

- - 1 1

Number of hidden layers (base

NN)

3 3 3 3

Runs 10 10 10 10

Table A.5.: Hyperparameters for RNS Training on ogbn-products

170

	Abstract
	Résumé
	Introduction
	State of the art
	Preliminaries
	Graph-structured Data
	Tasks on Graphs
	Knowledge Graph
	Opportunities
	Challenges

	Logic
	Propositional Logic
	First-order Logic
	Fuzzy Logic
	Description Logics

	Symbolic Reasoning
	Logic Programming
	Probabilistic Logic Programming
	Inductive Logic Programming
	Limitations

	Sub-symbolic Reasoning
	Knowledge Graph Embeddings
	Prominent Knowledge Graph Embedding Methods
	Loss Function
	Negative Sampling
	Evaluation
	Model Expressiveness and Inductive Capacity
	Comparison of Knowledge Graph Embedding Methods
	Limitations

	Graph Neural Networks
	Graph Convolutional Networks
	Graph Attention Networks
	Relational Graph Neural Networks
	Neural Knowledge Graph Embeddings
	Limitations

	Neuro-Symbolic Reasoning
	Desiderata of Neuro-symbolic AI
	Prominent Neuro-symbolic Frameworks in the Context of Graph Data
	Neural Probabilistic Programming
	Logic Tensor Networks
	Knowledge Enhanced Neural Networks
	Conclusion

	Neuro-Symbolic Reasoning on Graphs
	Rule Learning
	Knowledge-driven Graph Augmentation
	Knowledge as Constraints on the Embedding Space
	Knowledge as Regularization Terms in the Loss Function

	Summary and Perspective

	Contribution
	Reproducibility Study on Knowledge Enhanced Neural Networks
	Reproducibility in Machine Learning
	Experiments with Knowledge Enhanced Neural Networks
	Methodology
	Evaluation Criteria
	Reproduction
	Pitfalls and Workarounds
	Results
	Lessons Learned

	Replication
	Pitfalls and Workarounds
	Results
	Lessons Learned

	Reevaluation
	Results
	Lessons Learned

	Conclusion and Outlook

	KeGNN: Knowledge Enhancement of Graph Neural Networks
	Method
	Graph-structured Data
	Prior Knowledge
	Fuzzy Semantics
	Model Architecture

	Experimental Evaluation
	Datasets
	Prior Knowledge
	Implementation
	Results
	Exploitation of the Graph Structure
	Robustness to Incorrect Knowledge
	Clause Weight Learning

	Limitations
	Conclusion and Outlook

	Knowledge Enhancement on Large Graphs
	Problem Statement for Knowledge Enhancement on Large Graphs
	Memory Requirements of a Knowledge Enhancement Layer
	Multiple Knowledge Enhancement Layers

	Mini-batch Gradient Descent on Graphs
	Restrictive Neighbourhood Sampling
	Experimental Evaluation
	Datasets
	Prior Knowledge
	Hyperparameters and Experiment Setting
	Implementation
	Results

	Limitations and Perspectives
	Conclusion

	RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge Graphs
	Incomplete Knowledge Graphs
	Method
	Reasoning Engine
	Reasoning with Positive Rules
	Reasoning with Negative Rules
	Training and Reasoning

	Experimental Evaluation
	Dataset
	Rules
	Implementation
	Analysis of the Reasoner
	Positive Reasoning
	Negative Reasoning
	Zero-shot Learning
	Reasoning with Intermediate Concepts

	Limitations
	Conclusion and Outlook

	Conclusion
	Summary of Contribution
	Perspectives and Future Directions

	Bibliography
	Appendix
	Experimental Details of Knowledge Enhancement of Graph Neural Networks
	Experimental Details of Knowledge Enhancement on Large-Scale Graphs

