THESE U GA

Pour obtenir le grade de Université
, Grenoble Alpes
DOCTEUR DE L'UNIVERSITE GRENOBLE ALPES

Ecole doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Mathématiques et Informatique
Unité de recherche : Centre de recherche Inria de I'Université Grenoble Alpes

Intégration neuro-symbolique de I'extraction de connaissances et du
raisonnement sur les graphs.

Neural-Symbolic Integration of knowledge extraction and reasoning
on graph-structured data

Présentée par :

Luisa WERNER

Direction de these :
Nabil LAYAIDA Directeur de thése
DIRECTEUR DE RECHERCHE, INRIA
Pierre GENEVES Co-directeur de thése

Directeur de recherche, CNRS Délégation Alpes

Rapporteurs :

Fatiha SAiS

PROFESSEURE DES UNIVERSITES, Université Paris Saclay

Farouk TOUMANI

PROFESSEUR DES UNIVERSITES, Université Blaise Pascal- Clermont-Ferrand

Thése soutenue publiqguement le 11 décembre 2024, devant le jury composé de :

Nabil LAYAIDA, Directeur de thése
DIRECTEUR DE RECHERCHE, Centre INRIA de ['Université Grenoble

Alpes

Pierre GENEVeS, Co-directeur de theése
DIRECTEUR DE RECHERCHE, CNRS Délégation Alpes

Fatiha SAIS, Rapporteure
PROFESSEURE DES UNIVERSITES, Université Paris Saclay

Farouk TOUMANI, Rapporteur

PROFESSEUR DES UNIVERSITES, Université Blaise Pascal-
Clermont-Ferrand

Massih-Reza AMINI, Examinateur
PROFESSEUR DES UNIVERSITES, Université Grenoble Alpes
Stefania Gabriela DUMBRAVA, Examinatrice

MAITRESSE DE CONFERENCES, ENSIIE - Ecole Nationale

Supérieure d'Informatique pour I'Industrie et I'Entreprise & Institut

Polytechnique de Paris

Axel-Cyrille NGONGA NGOMO, Examinateur
FULL PROFESSOR, Paderborn University

To Line van den Berg

Abstract

Graph-structured data has gained significant attention in recent years due to its ability
to encode relationships between entities, making it a rich data structure capable of rep-
resenting complex patterns, long-chain dependencies, and cyclical structures. However,
graph-structured data, such as knowledge graphs, presents significant challenges that must
be addressed to fully unlock its potential. Since graphs are often large, partly unstructured,
and incomplete, algorithms designed for graphs need to efficiently process sparse data.

In parallel, Al research has seen a surge in the development of deep learning methods, while
symbolic methods have reached a level of stability with fewer noticeable breakthroughs.
Nonetheless, the explainability of symbolic methods, which are based on logic and prior
knowledge, has the potential to complement the strengths of sub-symbolic methods in
pattern matching, robustness, and scalability. As a result, research on neuro-symbolic
methods has gained attention, aiming to unify symbolic and sub-symbolic Al approaches.

This thesis explores how neuro-symbolic methods can be applied to graph-structured data
to solve reasoning tasks, such as knowledge graph completion, more efficiently and reliably.
The primary focus is on how prior knowledge, such as ontologies, can be leveraged to
enhance the performance of purely sub-symbolic methods. First, this thesis investigates
how prior knowledge can be integrated into a graph neural network through differentiable
neural layers based on fuzzy logic. Specifically, it examines the scalability and applicability
of this technique across different types of graphs. Second, a neuro-symbolic method
is proposed that injects knowledge into knowledge graph embeddings by integrating a
semantic reasoning engine.

1ii

Résumé

Les données structurées sous forme de graphes, telles que les graphes de connaissances,
ont attiré 'attention ces dernieres années en raison de leur capacité a encoder les relations
entre les entités, ce qui en fait une structure de données riche capable de représenter
des modeles complexes, des dépendances a longue chaine et des structures cycliques.
Cependant, les données structurées par des graphes posent quelques difficultés majeures
qu’il faut surmonter pour en exploiter le potentiel. Les graphes étant souvent de grande
taille, non structurés et incomplets, les algorithmes appliqués aux graphes doivent étre
capables de traiter efficacement des données éparses et non structurées en grille.

Parallélement, la recherche en IA a connu ces derniéres années une explosion du développe-
ment des méthodes d’apprentissage profond, tandis que les méthodes symboliques ont été
reléguées a I'arriere-plan. Néanmoins, la capacité d’explication des méthodes symboliques
basées sur la logique et les connaissances préalables peut compléter la force des méthodes
sub-symboliques en matiere de correspondance des formes, de robustesse et d’évolutivité.
C’est pourquoi la recherche sur les méthodes neuro-symboliques a attiré I’attention, dans
le but d’unifier les méthodes symboliques et sub-symboliques de I'TA.

Cette these étudie comment les méthodes neuro-symboliques peuvent étre employées
sur des données structurées en graphe afin que des taches de raisonnement telles que
la complétion de graphes de connaissances puissent étre résolues de maniere plus effi-
cace et plus fiable. L’accent est mis en particulier sur la question de savoir comment les
connaissances préalables, par exemple sous la forme d’ontologies, peuvent étre exploitées
pour améliorer le comportement des méthodes purement sub-symboliques. On étudie
comment les connaissances préalables peuvent étre intégrées dans un réseau neuronal par
le biais de couches neuronales différentiables basées sur la logique floue. L’extensibilité et
I'applicabilité de cette technique a différents types de graphes sont notamment examinées.
En outre, une méthode neuro-symbolique est proposée pour injecter des connaissances
dans les graphes de connaissances en intégrant un moteur de raisonnement sémantique.

Acknowledgements

This PhD would not have been possible without all the help and guidance I have received
over the past few years. First of all, I would like to thank my supervisors, Nabil and Pierre,
for their support throughout my thesis. Thank you for trusting me and giving me space
for my ideas, while always having an open ear for my questions. I would also like to
thank the entire Tyrex team. Thank you for making INRIA such a nice place to work. I
always felt welcome in the team and enjoyed our conversations during coffee and lunch
breaks. Special thanks to Amela and Sarah for their support and advice, and to my office
partner Laurent (without whose support in the form of Madeleines I would not have got
through the occasional afternoon slump). Lucia, thank you for your advice on this thesis
and, more generally, on finding a path in research. I would also like to thank Damien, my
CSI expert, for his valuable feedback during my thesis. Thanks also to Jérome Euzenat for
working with me on my first paper and giving me the courage that a reproducibility paper
can make it to an A* conference. Thanks to the members of the jury for their evaluation
and feedback. I would also like to thank the University of Grenoble Alpes and the MIAI
(ANR-19-P3IA-0003) for funding my research.

My time in Grenoble would not have been the same without the company of so many
wonderful people. Those who woke up with me at 5am to ski before work on untouched
powder and freshly groomed slopes. Those who have hiked, bivouacked and bikepacked
every pass and peak in the region: A big shout out to Aurélien, Annet, Denis, Charlotte,
Ronan, Jonas, Caro, Yann, Josh, Benoit, Elias, Pauline, ... and simply everyone who
considers themselves part of the Grelous crew! Johanna, thank you for proving that
camping at -15°C is possible and for your patience with me climbing! Special thanks to my
roommate Joseba, who not only shared a flat with me, but also countless hours on the bike
saddle and on the skis. Carla, starting bikepacking together was an adventure in itself,
and our yearly trip has been the constant in my bikepacking life ever since - thank you for
that! To Caro Meyer, even though you’ve been far away, you’ve always been there for me.
Thank you for all your personal advice and for being a constant source of support.

My heartfelt thanks to my flatmate Line. I miss you and wish I could have spent more
time with you. You were not only the one who encouraged me to start a PhD. It’s also
your voice I hear when I need someone to tell me I can do it.

A big thank you to my family, especially my sister Clara and my mum and dad for making
it all possible. You are the reason I have been able to pursue any degree I wanted. You
have taught me to never give up and to always support the decisions that have brought
me here. Thank you for being not only my parents, but also my friends. I am so glad that

vii

you were convinced by the charm of France and visited me regularly, and even more so
that you cycled the epic "grands cols" with me.

Finally, a big thank you to my partner Fabian. Thank you for being by my side, supporting
me at every step of this journey and teaching me countless things I'm proud to have
learned, such as cross-country skiing technique, bike mechanics, ski touring conversions,
setting up our own server, how to pronounce "Charmant Som", making cappucchino with
latte art... and I'm sure a complete list wouldn’t fit on a single page. I'm so grateful for all
the moments and adventures we have shared together.

viil

Publications

Parts of this research have been disseminated through publications and presentations at
the following academic conferences [206, 207, 208]:

« Reproduce, Replicate, Reevaluate.The Long but Safe Way to Extend Machine Learning
Methods. Luisa Werner, Nabil Layaida, Pierre Geneves, Jérome Euzenat, Damien
Graux. AAAI 2024 - The 38th Annual AAAI Conference on Artificial Intelligence,
Feb 2024, Vancouver, Canada

+ Knowledge Enhanced Graph Neural Networks for Graph Completion. Luisa Werner,
Nabil Layaida, Pierre Geneveés, Sarah Chlyah. The 10th IEEE International Confer-
ence on Data Science and Advanced Analytics, Oct 2023, Thessaloniki, Greece

(This work has also been presented at the 1st International Workshop on Knowledge-
Based Compositional Generalization (KBCG). The 32nd International Joint Conference
On Artificial Intelligence. August 2023. Macao. S.A.R.)

+ Neuro-Symbolic Integration for Reasoning and Learning on Knowledge Graphs. Luisa

Werner. AAAI 2024 - The 38th Annual AAAI Conference on Artificial Intelligence,
Feb 2024, Vancouver, Canada. Doctoral Consortium.

ix

Software

» Reproduce Replicate Reevaluate. The Long but Safe Way to Extend Machine Learning
Methods.

https://gitlab.inria.fr/tyrex-public/reproducibility-aaai24

+ Knowledge Enhanced Graph Neural Networks (KeGNN).
https://gitlab.inria.fr/tyrex-public/kegnn

+ Knowledge Enhanced Neural Networks on Large-scale Graphs.
https://gitlab.inria.fr/tyrex-public/scalable_ke

+ RuleKGE. Learning Rule-Injected Knowledge Graph Embeddings on Incomplete

Knowledge Graphs.
https://gitlab.inria.fr/tyrex-public/rulekge

x1

https://gitlab.inria.fr/tyrex-public/reproducibility-aaai24
https://gitlab.inria.fr/tyrex-public/kegnn
https://gitlab.inria.fr/tyrex-public/scalable_ke
https://gitlab.inria.fr/tyrex-public/rulekge

Contents

Abstract iiii
Résumé v
I. Introduction 1
Il. State of the art 7
1. Preliminaries 9
1.1. Graph-structuredData 9
1.1.1. TasksonGraphs 11

1.1.2. Knowledge Graph 12

1.1.3. Opportunities 14

1.1.4. Challenges. 14

1.2 Logic e 15
1.2.1. Propositional Logic 15

1.2.2. First-order Logic 17

1.23. Fuzzylogic 18

1.2.4. Description Logics Lo oL 19

2. Symbolic Reasoning 23
2.1. LogicProgramming 23
2.2. Probabilistic Logic Programming 24
2.3. Inductive Logic Programming 25
2.4. Limitations L 27

3. Sub-symbolic Reasoning 29
3.1. Knowledge Graph Embeddings 29
3.1.1. Prominent Knowledge Graph Embedding Methods 30

3.1.2. LossFunction 33

3.1.3. Negative Sampling 34

3.14. Evaluation 35

3.1.5. Model Expressiveness and Inductive Capacity 36

3.1.6. Comparison of Knowledge Graph Embedding Methods 37

3.1.7. Limitations 38

xiii

Contents

3.2.

Graph Neural Networks
3.2.1. Graph Convolutional Networks
3.2.2. Graph Attention Networks
3.2.3. Relational Graph Neural Networks
3.2.4. Neural Knowledge Graph Embeddings
3.2.5. Limitations o

4. Neuro-Symbolic Reasoning

4.1.
4.2.

4.3.

4.4.

Desiderata of Neuro-symbolic AT.

Prominent Neuro-symbolic Frameworks in the Context of Graph Data

4.2.1. Neural Probabilistic Programming
4.2.2. Logic Tensor Networks
4.2.3. Knowledge Enhanced Neural Networks
424. Conclusion L
Neuro-Symbolic Reasoning on Graphs
43.1. RuleLearning
43.2. Knowledge-driven Graph Augmentation
4.3.3. Knowledge as Constraints on the Embedding Space
4.3.4. Knowledge as Regularization Terms in the Loss Function
Summary and Perspective

I1l. Contribution

5. Reproducibility Study on Knowledge Enhanced Neural Networks

5.1
5.2.
5.3.
5.4.
5.5.

5.6.

5.7.

5.8.

Reproducibility in Machine Learning
Experiments with Knowledge Enhanced Neural Networks
Methodology
Evaluation Criteria
Reproduction. L
5.5.1. Pitfalls and Workarounds
55.2. Results
55.3. LessonsLearned,
Replication
5.6.1. Pitfalls and Workarounds
56.2. Results e
5.6.3. LessonsLearned
Reevaluation
57.1. Results e
5.7.2. LessonsLearned
Conclusion and Outlook

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

6.1.

Xiv

Method
6.1.1. Graph-structuredData

39
40
41
42
43
43

45
47
48
48
51
55
60
60
61
61
62
63
65

73
73
75
76
77
78
78
79
79
80
81
81
82
83
83
85
85

87
88
88

Contents

6.1.2. PriorKnowledge, . 89
6.1.3. Fuzzy Semantics 90
6.1.4. Model Architecture 91
6.2. Experimental Evaluation 94
6.2.1. Datasets 95
6.2.2. PriorKnowledge 95
6.2.3. Implementation 95
6.24. Results 95
6.2.5. Exploitation of the Graph Structure 96
6.2.6. Robustness to Incorrect Knowledge 98
6.2.7. Clause Weight Learning 98
6.3. Limitations 101
6.4. Conclusion and Outlook 102
Knowledge Enhancement on Large Graphs 103
7.1. Problem Statement for Knowledge Enhancement on Large Graphs 104
7.1.1. Memory Requirements of a Knowledge Enhancement Layer . . . 104
7.1.2. Multiple Knowledge Enhancement Layers 105
7.2. Mini-batch Gradient Descent on Graphs 106
7.3. Restrictive Neighbourhood Sampling 108
7.4. Experimental Evaluation 111
7.4.1. Datasets 111
7.4.2. PriorKnowledge 112
7.4.3. Hyperparameters and Experiment Setting 112
7.4.4. Implementation 113
7.45. Results 113
7.5. Limitations and Perspectives 115
7.6. Conclusion 115

RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete

Knowledge Graphs 117
8.1. Incomplete Knowledge Graphs 118
82. Method 119
8.2.1. Reasoning Engine. 120
8.2.2. Reasoning with PositiveRules 122
8.2.3. Reasoning with NegativeRules 124
8.2.4. Training and Reasoning 126
8.3. Experimental Evaluation 128
83.1. Dataset 129
832. Rules. 130
8.3.3. Implementation 130
8.3.4. AnalysisoftheReasoner 132
8.3.5. Positive Reasoningo oL 134
8.3.6. NegativeReasoning. 136
8.3.7. Zero-shotLearning 139

XV

Contents

8.3.8. Reasoning with Intermediate Concepts 140

8.4. Limitations 141
8.5. Conclusion and Outlook 143

9. Conclusion 145
9.1. Summary of Contribution 145
9.2. Perspectives and Future Directions 146
Bibliography 147
A. Appendix 167

xXVvi

A.1. Experimental Details of Knowledge Enhancement of Graph Neural Networks 167
A.2. Experimental Details of Knowledge Enhancement on Large-Scale Graphs 168

List of Figures

1.1. Directed Graph 9
1.2. Attributed Graph 10
1.3. Heterogeneous Graph 11
1.4. Inductive and Transductive Learning 12
1.5. Knowledge Graph 13
1.6. Ontology 20
2.1. Problog. Burglary Example 25
3.1. TransE, TransHandRotatE 30
3.2, BoxE . .. 32
3.3. DistMultandQuatE 33
3.4. Graph Convolutional Network 40
3.5. Graph Attention Network 41
3.6. Relational Graph Neural Network 42
4.1. Neuro-Symbolic AI 45
4.2. Schematic illustration of ways to integrate knowledge with neural net-
works for general neuro-symbolic frameworks. 48
4.3. Scallop. Kinship Reasoning Example 51
4.4. LTN. MNIST Addition Example 52
4.5. LTN. Smoker-Friends-Cancer Example (1) 54
4.6. LTN. Smoker-Friends-Cancer Example (2). 54
4.7. KENN. Architecture 56
4.8. KENN. Smoker-Friends-Cancer Example 59
49. KENN.JoinLayer 59
4.10. KALE. Embeddings by Jointly Modeling Knowledge And Logic 63
4.11. JOIE. Joint Embedding of Instances and Ontological Concepts 64
4.12. Outline of the Contribution 71
5.1. Overview of the Reproducibility Study 76
5.2. Pipeline of Extending Machine Learning Methods 86
6.1. Citation Graph Example 88
6.2. KeGNN. Architecture 91
6.3. KeGNN. Accuracy vs. Node Degree 97
6.4. KeGNN. Accuracy vs. Ratio of Misleading First-order Neighbors 99
6.5. KeGNN. Clause Weights vs. Clause Compliance 99

xVii

List of Figures

6.6.

7.1.
7.2.
7.3.

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
8.10.
8.11.
8.12.
8.13.

XViii

KeGNN. Clause Compliance during Training 100
Neighbourhood Explosion 105
Mini-batch Gradient Descent on Graph Data 107
Restrictive Neighbourhood Sampling. Example Graph 110
Incomplete Knowledge Graphs 119
Positive Rules and Facts. Example 122
Negative Rules and Facts. Example 125
RuleKGE. Overview i 127
Relations in Family Dataset 129
RuleKGE. Positive Programs 131
RuleKGE. Negative Programs 131
RuleKGE. Inferred Facts, Batch Size and Reasoning Time 132
RuleKGE. Number of Inferred Facts per Relation. Hierarchy Rules 133
RuleKGE. Redundant Facts. Inversion Rule Set 133
RuleKGE. Link Prediction Results. Reasoning with Intermediate Concepts 140
RuleKGE. Intermediate Concept Rule Sets 141
RuleKGE. Facts Inferred with Intermediate Concept 142

List of Tables

1.2.
1.3.

3.1.
3.2.

4.1.
4.2.

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.

6.1.
6.2.
6.3.

7.1.
7.2.
7.3.

8.2.
8.3.

8.5.
8.7.
8.9.

8.11.
8.13.
8.15.
8.17.
8.19.

Al
A2

Description Logics and First-order Logics 16
T-norm Functions 19
Inductive Capacity of Knowledge Graph Embeddings 37
Complexity of Knowledge Graph Embeddings 37
Symbolic vs. Sub-symbolic AT 46
Summary of Neuro-symbolic Methods 65
Overview of the Steps Reproduce, Replicate and Reevaluate 74
ReproductionResults oL 78
Hyperparameters in the Initial Experiment 80
ReplicationResults 82
Reevaluation Results on the Cora Dataset 84
Reevaluation Results on the Pubmed Dataset 84
Summary of the Lessons Learned 85
Overview of the Citeseer, Cora, PubMed and Flickr datasets 94
KEGNN. Node Classification Results on Cora, CiteSeer, PubMed and Flickr 96
KeGNN. Runtimes on the Citeseer Dataset 96
Overview of the ogbn-arxiv and ogbn-products Datasets 112
Results with Full-batch training on ogbn-arxiv and ogbn-products 113
Results with RNS Training on ogbn-arxiv and ogbn-products 114
Frequency of Facts and Relations in the Family Dataset 130
RuleKGE. Parameters, Embedding Dimensions and Number of Parameters

for Knowledge Graph Embeddings 134
RuleKGE. Link Prediction Results. Symmetry Rule Set 135
RuleKGE. Link Prediction Results. Hierarchy Rule Set 136
RuleKGE. Link Prediction Results. Inversion Rule Set 137
RuleKGE. Link Prediction Results. Composition Rule Set 138
RuleKGE. Link Prediction Results. Antisymmetry Rule Set 138
RuleKGE. Link Prediction Results. Mutual Exclusion Rule Set 139
RuleKGE. Link Prediction Results. Zero-shot Reasoning 139
RuleKGE. Link Prediction Results. Intermediate Concept Reasoning . . . 142
KeGNN. Hyperparameter for PubMed and Flickr 168
KeGNN. Hyperparameters for Citeseerand Cora 169

Xix

List of Tables

A.3. Hyperparameters for Full-batch Training on ogbn-arxiv
A.4. Hyperparameters for RNS Training on ogbn-arxiv . . .
A.5. Hyperparameters for RNS Training on ogbn-products .

XX

Part|l.

Introduction

Introduction

Graph-structured data is ubiquitous in various real-world applications such as e-commerce,
natural sciences and web search engines. In essence, graphs connect nodes through
edges, thus expressing relational information between entities. Graphs can be seen as a
generalisation of other data formats, such as images and language. In contrast, they do not
have any structural regularities. This makes them a powerful and versatile data structure
for capturing dependencies in an extensible format.

In particular, knowledge graphs encode information as a set of facts of the form (head,
relation, tail) which express the interaction between two entities through a relation. For
example, sellers and users on online marketplaces in an e-commerce network can be
considered as entities and their transactions as relations, e.g. (userA, buys, productB).
Graphs differ not only in the type of information they encode, but also in their format and
size. In some graphs, nodes or edges are enriched with feature information, for example in
the form of text or image data. In addition, graphs can be described by an ontology, which
contains rules that the facts in the graph should follow.

However, graphs also pose significant challenges. First, they are often extracted automati-
cally from multiple data sources with limited human intervention. As a result, noise and
errors from real-world data can be introduced into the resulting graph, leading to incorrect
facts. Second, graphs are often incomplete. The incompleteness may not only be due to
the extraction process, but may also result from the sparse structure of graphs. Knowledge
graphs typically store only information that is known to be true. False facts are usually
not stored explicitly. Storing all facts about a world would result in a large number of facts
with potentially redundant information. As a result, it is unclear whether unspecified facts
are missing or false.

Given the ubiquity of graph structures, several research areas are actively exploring
techniques from symbolic Al and deep learning to exploit them. Tasks of interest are for
example information retrieval, question answering, or link prediction. First, symbolic Al
uses reasoning techniques to infer new facts or generate proofs for queries. Symbolic
Al approaches are based on symbolic representations of knowledge, such as in logic
programming. These methods typically assume that the facts in the graph are true and do
not consider uncertainty or misinformation. Despite being interpretable, reasoning on
symbolic representations is subject to scalability problems for large graphs, which limits
its applicability.

Deep learning, in contrast, relies on vector representations and therefore falls into the
category of sub-symbolic AL Over the past decade, deep learning made breakthroughs in a

wide range of tasks across multiple domains. Powered by neural networks and their ability
to find patterns in raw data with minimal human intervention, deep learning methods
learn from noisy data while being scalable at inference. In the deep learning community
as well, graph-structured data is receiving increasing attention. The focus lies on building
neural network models that can process the relational structure of graph data. In this
context, graph neural networks refine vector representations through permutation invariant
operations. Often starting from attributed graphs, the node or edge representations are
iteratively updated with respect to the local graph neighbourhood. Another approach
is knowledge graph embeddings. They aim to represent a graph in the vector space by
capturing its entities and relations geometrically. As a result, tasks such as link prediction
and query answering can be solved efficiently based on distance functions in the Euclidean
space. These methods are robust to noise and scale well at inference.

However, the guarantees offered by symbolic approaches are often lost when the graph is
translated into vector space, where predictable inference is no longer ensured. Furthermore,
prior knowledge, sometimes explicitly formulated in an ontology, is neglected by most
approaches. As a result, the predictions in the vector space are not necessarily consistent
with the prior knowledge. Furthermore, deep learning models, including those on graphs,
are black-box models. Deep neural networks typically contain a large number of learnable
parameters. This makes their internal mechanisms intransparent and complicates the
interpretation of their predictions.

Recently, the research field of neuro-symbolic integration has gained interest since it
acknowledges the complementary advantages and disadvantages of sub-symbolic and
symbolic Al In this context, neuro-symbolic Al seeks to combine both paradigms in order
to find models that are robust, interpretable, knowledge-aware, scalable and accurate.
The goal is to potentially pave the way to trustworthy general artificial intelligence.
Frameworks such as DeepProblog [139] and Logic Tensor Networks [14] are promising
when it comes to integrating the pattern matching capabilities of deep neural networks
with symbolic reasoning about knowledge representations in formal logic. They are used
in various areas such as image recognition, visual scene understanding and multi-label
classification. There, the neuro-symbolic approach results in higher interpretability and
faster convergence compared to purely neural models.

While some neuro-symbolic approaches and concepts are promising for small and confined
tasks, their application to large graphs and complex knowledge is still uncertain. In
particular, the scalability of state-of-the-art neuro-symbolic methods to large graphs
with millions of nodes and edges has not yet been adequately addressed. While the
field of knowledge graph embeddings explores how to capture inference patterns such
as taxonomies, symmetries, or range and domain constraints, the encoding of complex
knowledge is less explored. Furthermore, there is less understanding of how to achieve
predictable inference with knowledge graph embedding, or how to incorporate soft rules.

Outline

This thesis investigates how neuro-symbolic Al techniques can be applied to graphs, with
the objective of jointly exploiting prior knowledge in formal logic and real-valued vector
representations. This thesis is structured as follows. It is divided into two main parts: L.
the state-of-the-art and II. the contribution part.

At the beginning of the first part, in Chapter 1, preliminary concepts are presented. In
Chapter 2 relevant concepts and methods from symbolic Al are introduced, followed by
concepts and methods from sub-symbolic Al and in particular deep learning in Chapter 3.
In Chapter 4 methods from neuro-symbolic Al are presented, evaluated and compared.

The second part contains the contributions of this thesis. Chapter 5 studies the repro-
ducibility of Knowledge Enhanced Neural Networks. Given the relevance of the work
on Knowledge Enhanced Neural Networks [46] to this thesis, the experiments are reimple-
mented, reproduced, replicated, and reevaluated. These steps aim to ensure the reliability
of the reimplementation for further extensions. General lessons for improving the repro-
ducibility of machine learning methods are summarised. Chapter 6 introduces the method
Knowledge Enhanced Graph Neural Networks (KeGNN), which incorporates knowledge
enhancement layers into graph neural networks. Unlike previous work where these layers
were used with Multi-Layer Perceptrons, KeGNN leverages graph neural networks. This
allows relational information to be captured and increases the capacity of the model.
The effectiveness of KeGNN is tested through experiments on various graph datasets.
Chapter 7 builds on the previous chapter and deals with the applicability of knowledge
enhancement layers to large graphs, where memory requirements significantly increase.
The sampling method called Restrictive Neighbourhood Sampling (RNS) is introduced to
make KeGNN applicable to large graphs. In addition, experiments with knowledge en-
hancement layers are carried out on benchmark datasets from the Open Graph Benchmark
[93]. Chapter 8 presents the neuro-symbolic method RuleKGE that focuses on knowledge
graph embedding training under the open-world assumption. It combines a symbolic
reasoner to generate positive and negative facts. They are integrated into the training
of knowledge graph embeddings for link prediction. The effectiveness of the method is
shown in several experiments on the Family dataset [120].

Part ll.

State of the art

1. Preliminaries

This section introduces preliminary concepts and definitions related to graph-structured
data and logic that are relevant to this thesis.

1.1. Graph-structured Data

Graph-structured data has recently received a lot of attention. While traditional standard
data formats tend to neglect interactions between entities, these dependencies can be
explicitly modelled in graphs. This makes them a powerful and flexible data format.
Different types of graphs and relevant concepts are formally introduced in this section.

Definition 1.1.1 (Graph). A graph is a tuple G = (V,E) where V = {01, ...,0,} is a finite
set of n nodes and E = {ey, ... ey} is a finite set of m edges.

An edge is a tuple (v;,v;) that connects the two nodes v; € Vand v; € V. The edges of a
graph are described as adjacency matrix.

Definition 1.1.2 (Adjacency Matrix). Given a graph G, the adjacency matrix is denoted
as A € {0,1}™". The (i, j)-th entry A;; indicates whether an edge exists between the nodes
v; andv; (Ajj = 1) or not (Aj = 0).

o1

’ N (v1) 0,
@ A= 8

U4

o .
o

Figure 1.1.: A directed graph is shown on the left. The first-order neighbourhood of the
node v, is the set Ni(v1) = {v1, 02, 05} and is marked in grey. The degree of v;
is deg(v1) = 3. The adjacency matrix of the graph is shown on the right.

Q
iy
Q
1\
Q
w
Q
=
(]
i
[]
x

oS O O O O O
S O =k O = O
S O =k O O M
e e == e]

S O O O O
S O O O O

1. Preliminaries

1] 01 02 U3 () U5 Us
: 070 1.3 0 19 08 07
0] 0|0 0 07 0 0 0
A |0 0 0 0 0 0

" -
; 0,10 0 15 0 1.1 0
. vs]0 0 0 0 0 1.6
%l 0 0 0 0 1.1

Figure 1.2.: A directed, weighted graph, node-attributed is shown on the left and its adja-
cency matrix on the right.

A graph can be directed or undirected. In directed graphs an edge (v;,0;) € E leads from
node v; to v;. The edges in undirected graphs have no orientation. The adjacency matrix
A of an undirected graph is symmetric, meaning A;; = A;; for any pair of nodes v; € V
ando; € V.

Definition 1.1.3 (Neighbourhood). Given a graph G, the k-order neighborhood of a
nodev; € V with k € Ny is the set of nodes Ni.(v;) with N (v;) = {v; € V|dist(v;,0;) < k}.
dist(v;, vj) represents the shortest path length in terms of number of edges from node v; to node

v;. If no path exists between v; andv;, v; is not included in Ny (v;). The 0-order neighbourhood
No(v;) of node v; is the node v; itself.

The k-order neighbourhood over a set of nodes V is N (V) = {N(v)|v € V}.

Definition 1.1.4 (Node Degree). Given an undirected graph G = (V, E) with adjacency
matrix A, the node degree of a nodev; € V is deg(v;) = }; Ajj. Given a directed graph G =
(V,E) with adjacency matrix A, the node degree of a nodev; € V isdeg(v;) = X ; Ajj+ 2 Aji.

A directed graph with an adjacency matrix is visualised in Figure 1.1. Node and edge
features can provide additional real-valued information about nodes and edges.

Definition 1.1.5 (Attributed Graph). A node-attributed graph G = (V,E, Xy) is enriched
with node features Xy € R™% with feature dimension dy. An edge-attributed graph G =
(V,E, Xg) is enriched with edge features Xy € R™% with feature dimension dg.

Single-valued edge features are also called edge weights. A graph with edge weights is
called weighted. In the case of a weighted graph, the adjacency matrix contains the edge
weights. A graph is called node-labelled if ¢ different labels Y € R™ are assigned to each
node. A weighted and node-attributed graph is shown in Figure 1.2.

10

1.1. Graph-structured Data

o/olol10l0
0o1/0/0 00 O
ol1]ofofofo]0]ll°
olojofolofo]0ll°
oloflololofo]0ll°
olo|1]o]1[o] 0[O
o/ojojo 0|01
0ololololol1

Figure 1.3.: A heterogeneous graph with the relations 7¢ = {ry, 2, r3} is shown on the left.
The edges are denoted as relation-specific adjacency matrices on the right.

Definition 1.1.6 (Heterogeneous Graph). A heterogeneous graph is defined as a G =
(V,E, 7v, Tg), where the nodes V and edges E are associated with type functionsf, : Vi— Ty
and f, : E +— Tg. They assign node and edge types to nodes and edges respectively. Ty and Tg
are finite sets of node and edge types.

Heterogeneous graphs with multiple edge types are also called multi-relational graphs. In
the case of attributed and heterogeneous graphs, the edge and node feature dimension
dg and dy can differ with node and edge type. An example of a heterogeneous graph is
shown in Figure 1.3.

Definition 1.1.7 (Homogeneous Graph). In a homogeneous graph G = (V,E), all nodes
in'V are instances of the same node type, and all edges in E are instances of the same edge

type.

1.1.1. Tasks on Graphs

A graph G = (V,E, Y) with labels Y is split into a training graph and a test graph. Inductive
or Transductive learning [171] can be applied, see Figure 1.4.

Definition 1.1.8 (Inductive Learning). In inductive learning, the training graph is Gyqin =
(Vtraina Etraina Ytrain) and the test ngh is Gtest = (Vtests Etest’ Ytest); Where {U|U € Vtrain ANv €
Vtest} = 0.

Definition 1.1.9 (Transductive Learning). In transductive learning, the training graph is
Gurain = (V, E, Yirain) and Viest C Vipain.

In the transductive setting, the entire graph is available at training, including edges between
train and test nodes. The labels of the test nodes are masked. In the inductive setting, no
edges between nodes in the training and the test graph exist.

11

1. Preliminaries

Gtest

Figure 1.4.: In inductive learning, as shown above, the training graph Gyy,in and the test
graph Gyest are not connected with edges. In transductive learning, as shown
below, edges between nodes of the training and test graph do exist and are
drawn in red.

Several graph-related tasks are subject to research such as node classification, graph
clustering, link prediction and graph classification. This thesis focuses on the tasks of node
classification and link prediction [138].

Definition 1.1.10 (Node Classification). The task of node classification is to leverage
Girain With the labels Yirin to learn a function that assigns labels to the nodes Vi in the
test graph.

Definition 1.1.11 (Link Prediction). Given a graph G = (V, E), let M denote the set of all
possible edges between nodes in V. The set E’ contains the unobserved edges between the
nodes and is denoted as E’ = M/E. The goal of link prediction is to leverage the existing
edges E and nodes V in G to learn a function that predicts the edges in E’ that are likely to
exist.

1.1.2. Knowledge Graph

Knowledge graphs [91, 171, 104] are considered as multi-relational, directed graph struc-
tures where nodes are called entities and edge types are called relations. They store

12

1.1. Graph-structured Data

wrls S gy e
i
ceo_of o — > 4 o
e John) ©)
- : Car
Sarah™. DeuTscAhe Bank log, §
‘ e =
L, 3
N v >
& = \
g § >
s X, v
\%‘L %, 5 -
' ¥ oe = i
. v ’Ves\ n

\) Germany
N h 50 s/
- ™ W& >/
VN . éaz,
hwnnn] [aunn] studied_at & works_at _—
1 « = Anna
University of Oxford o

Peter DHL

Figure 1.5.: [llustration of an example knowledge graph. The figure is taken from [9].

information in the form of facts, which relations between pairs of entities. The compo-
nents of a fact are also known as (head, relation, tail) or (subject, predicate, object). Entities
represent real-world objects or abstract concepts, while relations describe the relationships
between them. Well-known knowledge graphs are for example Wikidata [210], YAGO
[191] and Freebase [25]. The illustration of a knowledge graph is shown in Figure 1.5.

Definition 1.1.12 (Knowledge Graph). A knowledge graph is defined as tuple K =
(&R, F), where & is a set of entities, R a set of relations and ¥ C (& X R X &) is a set of
facts. Facts are stored as triples (ep, 1, ;) with head and tail entities ep, e; € & and a relation
r € R between them.

The terms one-to-one, one-to-many, and many-to-one describe different characteristics of
relations between entities. A one-to-one relation connects a head entity to exactly one
tail entity, e.g. PassportID(h,t). A one-to-many relation associates a single head entity
with multiple tail entities, e.g. hasFather(h,t). A many-to-one relation is the opposite,
e.g. bornIn(h,t). A many-to-many relation links multiple head entities to multiple tail
entities, e.g. sibling(h,t).

While knowledge graphs can in principle be enriched with node and edge features [91,
2, 71, 171], the vast majority of benchmarks consist only of a set of facts and are not
attributed with node features [149, 191, 31].

Knowledge graphs are known to be incomplete. For example, 71% of individual persons in
Freebase do not have an edge to a birthplace and 78% do not have an edge to a nationality
[209]. In Wikidata, 50% of the artists do not have a birthplace [209]. This incompleteness
has several reasons. First, knowledge graphs are typically built semi-automatically from
existing knowledge based on heuristics, extraction patterns or crowdsourcing methods,
which can be prone to errors [104, 21, 3, 102, 222]. Second, it would not be reasonable to
explicitly store every known fact about a world [39]. This would lead to overhead and

13

1. Preliminaries

redundant information, when many facts are inferred [79]. The notation of the edges
as facts, as opposed to an adjacency matrix, is suitable for supporting incompleteness.
Knowledge graphs usually consist only of explicitly known facts, which are assumed to
be valid [9], but do not guarantee to contain all true facts. Different assumptions can be
made about the implicit facts. Under the Closed World Assumption (CWA), facts that are
not contained in the graph are assumed to be false. Under the Open World Assumption
(OWA), facts that are not contained in the graph are not known to be true or false [157].

1.1.3. Opportunities

Knowledge graphs have received increasing attention in various domains, as well as from
academia and from industry [104]. Knowledge graphs such as YAGO [191], Freebase [25],
Wikidata [210] and Nell [31] contain general knowledge, while others such as BioRDF
[29] store domain knowledge in the field of life sciences. In addition to open knowledge
graphs, there are many enterprise knowledge graphs in industry, such as LinkedIn [86],
Bloomberg [145] and IBM [158]. Knowledge graphs, compared to basic data, particularly
have the following benefits.

Relational Semantics. Graph-structured data expresses relationships between entities.
This feature makes them a rich data source to model context, complex patterns, long-range
dependencies and cyclic structures [91].

Flexibility. Since knowledge graphs store information as facts, the definition of a rigid
schema can be postponed [91]. This enables graphs to be extended flexibly and to incorpo-
rate information from various data sources. Moreover, in contrast to an adjacency matrix,
the triple format facilitates the representation of incomplete knowledge and supports
efficient storage of large data.

Applications. Given their advantageous properties, knowledge graphs have proven useful
across a variety of applications, including question answering [44, 54, 152], complex query
answering [171], recommender systems [224, 198], natural language processing [230,
133, 109], biomedical research, fraud detection, and more. In general, they are a central
representation to many information systems on the web [39].

1.1.4. Challenges

Despite these advantages, graphs present some challenges that need to be addressed in
order to unlock their potential.

14

1.2. Logic

Sparse Representation. In contrast to a dense adjacency matrix, facts are sparse infor-
mation and difficult to manipulate for machine learning algorithms mainly designed for
dense matrices [201]. While data such as images and text have a clear grid-like structure,
knowledge graphs do not have a start, end or order. This is also known as the geometric
deep learning problem [27, 212]. To be applicable to graphs, mathematical operations such
as convolutions or pooling need to be generalized to non-grid structures. Many algorithms
in the field of graph neural networks [114, 196, 80] are only applicable to homogeneous
graphs.

Incompleteness. The incompleteness of knowledge graphs is also a major challenge for
many algorithms, making it difficult to model them as dense matrices. However, most
machine learning algorithms are adapted to dense matrix data that is explicit and complete.
For example, common graph neural network methods [114, 212] assume that the graph
structure is complete and free of noise [96].

Large Scale. In the era of big data, graphs often contain millions or billions of edges [183].
Therefore, algorithms applied to them need to scale to such dimensions [219, 231, 93, 177].
Many traditional learning algorithms on graphs are NP-complete and are sensitive to the
number of nodes [201]. Their application can be infeasible due to their complexity [171].

1.2. Logic

Logic is the systematic study of valid reasoning, inference, and argumentation. It provides
a formal framework for formulating claims and analysing their validity. In essence, logic
is concerned with the principles of correct reasoning that enable one to draw conclusions,
and assess the coherence of statements and propositions [51]. A logical language is a formal
system composed of syntax, semantics and inference rules [52]. Logic has a wide range
of applications, from philosophy to artificial intelligence. This section briefly introduces
propositional logic, first-order logic, fuzzy logic and description logics. An overview of the
logical languages is summarized in Table 1.2.

1.2.1. Propositional Logic

Propositional logic focuses on propositions which are atoms that are either True or False,
never both and never neither. It is used to represent and reason about simple statements,
called propositions, and their logical relationships.

Signature. A signature in propositional logic is a set of propositional variables ¥ =
{D,9,...}..

15

1. Preliminaries

Name DL Description FOL Example
Top T Thing T,Vx : T(x) = true T C Male U Female
Bottom 1 Nothing 1,Vx:L (x) =false Male I Female C.L
Subsumption | AC B | A subclass of B Vx : A(x) — B(x) Child E Human

RC S | Rsubproperty of S | VxVy : R(x,y) — S(x,y) | Mother C Parent
Equivalence | A= B | A equivalent to B Vx : A(x) < B(x) Person = Human
Instantiation | A(i) itype A A(i) Female(julia)
Relations R(i, j) | irelated tojwithR | R(i, j) Mother(julia, rob)
Complement | —A not A —A(x) not Mother(julia,rob)
Intersection | AMB | AandB A(x) A B(x) Female MM Parent
Union AUB | AorB A(x) V B(x) Father LI Mother
Inverse R™ inverse of R Vx,y : R(x,y) > R (y,x) | marriedTo = marriedTo~
Composition | RoS | composition of Vx,y,z: R(x,y) AS(y,z) | Brother o Parent C Uncle

Rand S

Table 1.2.: Overview of the syntax and semantics in description logics (DL) and its rewriting
in first-order logics (FOL). A and B are concepts in DL and unary predicates
in FOL. R and S are relations in DL and binary predicates in FOL. i and j are
entities in DL or constants in FOL. x, y and z are variables.

Syntax. Propositions can be combined with logical connectives. Given two propositions
® and Y, the following expressions are also propositions

-d

> —->Y
dAY
(ORVAN
d o V¥,

where A stands for conjunction, V for disjunction, — for implication, <> for equivalence
and — for negation.

Semantics. Given two propositions ® and ¥, the meaning of the connectives is defined
by truth tables. In propositional logic, a statement that must be true is called a tautology,
and a statement that must be false is called a contradiction.

Example 1.2.1 (Propositonal Logic). Suppose there are two propositions:

® : It is raining (1.2)

V¥ : Tam carrying an umbrella.

16

1.2. Logic

These propositions are used to express different relationships, e.g. ¥ A ®: "It is raining
and I am carrying an umbrella". This corresponds to the following truth table.

d L4 OAY
True | True | True
True | False | False
False | True | False
False | False | False

1.2.2. First-order Logic

Unlike propositional logic, first-order logic is more expressive and allows to formulate
more complex relationships using quantification.

Signature. First-order logic consists of pairwise disjoint sets of predicates $, constants
C, variables V and functions .

Syntax. The most basic form of a formula in first-order logic is an atom. An atom applies

a predicate to a constant and is denoted as r(t;, ..., t,), where r € P is an n-ary relation
and ty, ..., I, are terms. A term t; is a constant, a variable or a structured term of the form
f(t1,...,ty) with functor f. Further, a positive or negative atom is called literal. First-order

logic uses the same connectives as presented for propositional logic in Equation 1.1. In
addition, the existential quantifier 3 and the universal quantifier V are defined. A variable
that is within the scope of a quantifier in a formula is called quantified and free if it is
not.

Given these components, atoms can be combined with logical connectives and quantifiers
to form complex formulae ¢. They can be constructed recursively using the following
grammar.

@ =r(s1,....,5) [mele AYle — Ylo vV ¢[3xe | Vxe (1.3)

Here, r € P is an n-ary predicate and x € V is a variable.

Semantics. Constants represent objects or entities and functors represent functions.
Variables make abstractions about entities and predicates of the arity n describe a property
or relations of n objects in a domain [50]. Vx¢(x) means that the expression ¢ is valid for
all variables x. 3x¢(x) means that at least one object in the domain has the property ¢.
As in propositional logic, the meanings of the connectives in first-order logic are defined
by their truth tables.

IThis is a different notation from the set of facts ¥ in a knowledge graph introduced in Section 1.1.2

17

1. Preliminaries

Grounding. The replacement of variables by constants is called grounding. An atom
containing only constants is called grounded atom. Thus, a grounded literal is a posi-
tive or negative grounded atom and a grounded formula is a formula containing only
grounded atoms. A substitution of variables x; € X by constants ¢; € C is defined as
0 = {x1lc1, . .., xk|ck}. Applying 0 to a logical expression ¢ results in the replacement of
all variables x; € 6 in the expression by the defined constants ¢; € 6 [50].

Example 1.2.2 (First-Order Logic). The following atoms are defined in first-order logic.

Person(x) : x is a person.
Umbrella(x) : x is carrying an umbrella. (1.4)
Rain : it is raining.

Then the statements "Everyone carries an umbrella when it rains" and "There is at least
one person who carries an umbrella when it rains" are made.

Vx: Person(x) A Rain — Umbrella(x)
Ix: Person(x) A Rain A Umbrella(x)

(1.5)

1.2.3. Fuzzy Logic

While the previously introduced logical languages only consider the Boolean truth values
True and False, Fuzzy logic [220] is a form of many-valued logic that denotes truth values
in a continuous interval of [0, 1] € R. Fuzzy logic supports the concept of partial truth,
where statements are neither completely true nor completely false. This allows to express
vagueness and uncertainty. Fuzzy logic is based on triangular norm theory [117]. It is useful
to model logical operators as real-valued functions that take into account continuous truth
values. In the following, the t-norm and t-conorm are defined.

Definition 1.2.1 (t-norm). The t-norm is a function T : [0,1] X [0,1] + [0,1] that
satisfies the following properties:

Commutativity T(a,b) =T(b,a)
Monotonicity T(a,b) < T(c,d) ifa<candb<d
Associativitity T(a, T(b,c)) =T(T(a,b),c)
Identity T(a,1) =a.

Definition 1.2.2 (t-conorm). The t-conorm is a function T : [0,1] X [0,1] + [0, 1] that
satisfies the properties of commutativity, monotonicity, associativity and has the neutral
element 1 (a,0) = a.

18

1.2. Logic

T-conorms are dual to t-norms. Given a t-norm T, the corresponding t-conorm is defined as
1 (a,b) =1-T(1—-a,1-b). Some examples of t-norm functions with their corresponding
t-conorms are the Godel t-norm, the Lukasiewicz t-norm, and the product t-norm. The
way they represent logical operators in fuzzy logic is shown in Table 1.3.

Expression | Product Lukasiewicz Godel

XAy TProd =X Y Tiuk = Max(0,x+y — 1) | Tyin = min(x,y)
xVy lprod=X+Yy—x -y | Lpy=min(l,x+y) 1 max= max(x, y)
x>y (£).x>0 1-x+y y

X 1—-x 1-x 1—-x

Table 1.3.: Overview of the Product, Lukasiewicz, Godel t-norm and t-conorm functions
for logical operators. x and y are logical expressions.

In fuzzy logic, quantifiers are represented as symmetric and continuous aggregation
operators of the form Agg : | J,en[0, 1]" — [0, 1]. Appropriate aggregators for 3 and V
are Apy and Apye with p > 1 [14]. They represent the smooth maximum and minimum
of n truth values {ay,...,a,} € [0,1] C R.

1% ’
H:APM(al,...,an):(;Zaf) p>1 (1.6)

i=1

1
1\ ’
V:APME(al,...,a”):1—(22(1—@)17) p=1 (1.7)
i=1
The parameter p controls the flexibility of the operator to outliers.

Soft rules. The notion of degree of truth also allows to formulate soft rules in contrast
to hard rules. Hard rules are usually hand-crafted by experts and are expected to hold
without exception. Soft rules are tagged with a score that corresponds to the confidence
in the rule. This enables better handling of exceptions. Soft rules with confidence scores
can also be automatically extracted from data [65, 146].

1.2.4. Description Logics

Description logics (DL) [12] is a family of knowledge representation languages widely used
in the context of knowledge graphs. The key elements are finite sets of entities E, concepts
C and relations R. Furthermore, the logical operators negation (—), equality (=), intersection
(M), union (L) and logical inclusion (E) allow building complex formulae. Further, the top
concept T is used to make statements about each entity and the bottom concept L describes
the empty set of concepts.? Universal (VR.C) and existential restriction (3R.C) quantify

The notation of t-norm and t-conorm is distinct from the notation of the top and bottom concept in logic.

19

1. Preliminaries

over sets of concepts. Description logics is a subset of first-order logic, where the arity of
predicates is limited to two. In the terminology of first-order logic, entities correspond to
constants, concepts to unary predicates and relations to binary predicates. A summary of
the operators in DL and their rewriting in first-order logic is presented in Table 1.2.

i John rdf:type Person. % Individuals
> Mary rdf:type Person.
5 Jane rdf:type Person.
4 Rob rdf:type Person.
¢ Person rdf:type owl:Class.
Male rdf:type owl:Class. % Concepts
8 rdfs:subClassOf Person.
o Female rdf:type owl:Class.

10 rdfs:subClassOf Person.

12 hasChild rdf:type owl:0bjectProperty. % Roles

13 rdfs:domain :Parent.

14 rdfs:range :Child.

15 1sChildOf rdf:type owl:0bjectProperty.

16 rdfs:domain :Person.

17 rdfs:range :Person.

v Male owl:disjointWith Female. % TBox Axiom
21 hasChild owl:inverse0f isChildOf. % RBox Axiom

Figure 1.6.: An example ontology describing kinship relations.

The axioms formulated in DL are categorized into (1) assertional axioms (ABox), (2) relational
axioms (RBox), and (3) terminological axioms (TBox) [123]. Abox axioms refer to the facts
about the instances in a knowledge graph. They encode knowledge about entities and
describe the concepts to which individuals belong, such as City(Paris), or the relationships
between them, such as Parent0f(Julia, John), also known as roles. In contrast, TBox
axioms characterise general relationships between concepts and RBox axioms between
relations. This allows to formulate complex relationships between relations and concepts
such as symmetry, hierarchy, inclusion, transitivity or mutual exclusion.

Ontologies. An ontology is a set of TBox and RBox axioms in DL. Ontologies are formal
and explicit specifications of the concepts, entities and relations that exist in a particular
domain, see Section 1.1.2. In other words, they describe the semantics of the components
in a knowledge graph by formalising conventions about what entities and relations mean
in a domain [91]. While the facts in a knowledge graph are seen as premises, ontologies
encode general rules, also known as common sense or domain knowledge. In this context,
ontologies together with facts allow reasoning on knowledge graphs. This concretely
means inferring new facts from existing facts and rules [106]. Ontologies are often

20

1.2. Logic

composed of schemas and complex formulae in OWL [205]. A schema describes the
high-level semantics that the knowledge graphs follow [91] and includes, for example,
range constraints for relations, formulated in RDFS [118]. Since not all knowledge graphs
have a schema [170], ontology learning tasks allow to build, refine and learn ontologies
[211, 60].

Example 1.2.3 (Ontology). The ontology in Figure 1.6 represents basic concepts and
relations in the family domain. The entities John, Mary, Jane and Bob are instances of
the concept :Person. The concepts Female and Male are subclasses of Person. The roles
isChild0f and hasChild denote relationships between individuals. The TBox axiom Male
owl:disjointWith Female states that the concepts Male and Female are disjoint, i.e. no
individual is both male and female. The RBox axiom hasChild owl:inverse0f isChildOf
asserts that the property hasChild is the inverse of the property isChildof.

21

2. Symbolic Reasoning

Symbolic reasoning refers to reasoning techniques based on formal methods. Logical
languages, such as first-order logic and description logics, are a cornerstone of symbolic
systems. Knowledge in symbolic systems often refers to rules that are hand-crafted by
experts. Symbolic methods are typically deterministic and close to human language, which
makes their application explainable and understandable [88, 100]. This section introduces
some prominent symbolic reasoning techniques.

2.1. Logic Programming

Logic Programming [16] is a relevant symbolic reasoning technique based on Horn rules
[92].

Definition 2.1.1 (Horn Rule). A horn rule is defined asn < B(f1 A ... A B,), where
the head n is a singular atomic formula and the body B is a conjunction of atomic formulae
Bi A ... A\ By in first-order logic.

Each atomic formula f; is a literal of the form r(ty,...,t,), where r € P is a predicate
and t,...,t, are terms. A finite set of rules and facts is known as a logic program. A
logic program describes a specification of possible theories in a world. The rules serve as
constraints that these theories should satisfy.

Given a logic program, reasoning describes the process of deriving new facts from existing
ones. When the head of a rule is satisfied, the tail can be inferred. An inferred fact is called
the immediate consequence of the program and the facts. Starting with a set of atomic facts
and a logic program, the rules of the program are applied repeatedly to the existing facts
and inferred facts until no more new facts are derived. This state is called a fixpoint and
the procedure is called forward chaining. Proof trees show how a new fact is derived from
the original facts and rules of a program in a bottom-up manner.

A prominent declarative programming language is Datalog [28]. A program in Datalog
consists of finite sets of facts and rules. While facts are grounded atoms, rules contain
variables and follow the syntax of Horn rules, see Definition 2.1.1. In Datalog, rules are
written as n : —f4, ..., B,. Datalog programs are used for deductive reasoning and are
evaluated in a bottom-up manner. The existence of a fixpoint in Datalog is guaranteed for
linear rules and rules with stratified negation [5].

23

2. Symbolic Reasoning

Example 2.1.1 (Datalog). Consider the following Datalog program:

1 parentOf(A,B) :- childOf(B,A)
2 childof("alice", "bob")

The program contains a rule which describes the inverse relation between the concepts
parent0f and childof and a fact which states that the constant "alice" is the child of the
constant "bob". By evaluating the Datalog program, the fact parent0f("bob", "alice") is
an immediate consequence of the program and is inferred.

2.2. Probabilistic Logic Programming

Probabilistic Logic Programming (ProbLog) [202, 63] introduces probabilities to logic pro-
gramming. A program in ProbLog consists of rules and probabilistic facts, where a proba-
bility p € [0,1] € R is attached to a ground atom f, denoted as p :: f or Pr(f) = p. This
allows to model uncertainties. Facts are treated as independent Boolean random variables
that are considered as true with probability p and as false with probability 1 — p with
pelo,1] cR.

Example 2.2.1 (ProbLog). The following ProbLog program indicates that a burglary or
an earthquake occurs with certain probabilities. The person Mary might hear the alarm
with probability of 0.5. If Mary hears the alarm, she will call the police.

1 0.1 :: burglary
0.2 :: earthquake

3 0.5 :: hears_alarm("mary")
4 alarm :- earthquark
alarm :- burglary
6 calls(X) :- alarm, hears_alarm(X)

Inference in ProbLog means returning the success probability q of a ground fact. The
calculation of the success probability is based on proofs. A proof of a given fact f” is
defined as the minimal set of input facts F that can infer f’, and is denoted as F € P(¥),
where P is the power set of all known facts. The probability of a proof Pr(F) is defined as
the product of the truth values p; of the probabilistic facts f; as

prfy=[]p [] (-p0- (2.1)

fieF fieF\F

Given a set of proofs S, the success probability is the joint probability of all proofs in
the set S;: g = Pr(S;). The set of proofs for a query S, can be determined during the
bottom-up execution of the program based on a Sequential Decision Diagram (SDD) [49] by
computing truth values from known facts to truth values of logic statements. This process
is called Weighted Model Counting (WMC) [112] and is based on semirings. Semirings

24

2.3. Inductive Logic Programming

define binary operations for disjunction @ and conjunction ® of sets of proofs S;, Sz, so
that the truth values of proofs in a set can be combined. For example, S; & S, = S; U S, or
$1® S, ={F| F=F, UF, (F,F,) €S; XS, F}, where F contains no disjunction conflict.
Given these semantics, the set of proofs for a query is constructed in a bottom-up manner:

Ss= B |XR)sr]. (2.2)

F derives q \ feF

It is shown in [112] that the bottom-up pass calculation is correct for any commuta-
tive semiring, where both the multiplication and the addition operator are associative,
commutative, and have a neutral element [112].

Example 2.2.2 (ProbLog Inference). To illustrate the query evaluation in Problog,
consider the previous logic program in Example 2.2.1. The query of interest is calls("mary").
The corresponding SDD looks as follows.

Figure 2.1.: The SDD for the burglary example. The figure is taken from [139].

The query is decomposed in its proofs under the guidance of the SDD.

calls("mary")
<> hears_alarm("mary") A earthquake (2.3)

< hears_alarm("mary") A (burglary V —earthquake)

Given the multiplication as operator for ® and addition as operator for @, the success
probability of the query calls("mary") results in

P(calls("mary")) =0.2-0.5+(0.5-0.8-0.1) = 0.14. (2.4)

2.3. Inductive Logic Programming

The central task in Inductive Logic Programming (ILP) [153] is to induce rules from the facts
in a dataset. It is based on symbolic rule mining techniques that focus on statistical metrics
in the data, such as correlations, and generalise them into rules. These rules are useful for
various tasks, such as identifying regularities in databases and detecting errors. Likewise,

25

2. Symbolic Reasoning

they can be used for deductive reasoning. They can also be employed in neuro-symbolic
systems that rely on input rules, but do not yet have expert knowledge available [226, 222,
40].

A widely used ILP approach is the association rule mining technique AMIE [65]. AMIE
efficiently generates Horn rules «— B, see Definition 2.1.1, where the head is r(x, y) with
relation r. Starting from a set of facts, the rules are iteratively mined according to their
support and confidence.

The support of a rule is
supp(r(x,y) «— B) == [{(x,y) : Fz1,...,zm : BAT(x,)}, (2.5)

where zi, ..., z, are the variables of the rule apart from x ard y. AMIE uses the head
coverage h, which is based on the support and measures the proportion of the occurrence
of a rule pattern in the dataset.

supp(r(x,y) < B)
{(&xy) :r (', y)}
The denominator is the length of the set of all tuples (x’, y’) such that r(x’,y’) holds.

he(r(x,y) < B) := (2.6)

The confidence measures the proportion of facts in which the rule applies to the number
of cases in which the rule body is satisfied.

supp(r(x,y) < B)
{(x,y) : 3zy1,...,2m : B}|
AMIE adapts a the confidence metric conf,.,, where the confidence is not normalized by
the entire set of facts, but only by the set of facts that are known to be true and the facts
that are assumed to be false:

conf(r(x,y) « B) := (2.7)

supp(r(x,y) < B)

{(x,y): Fz1,...,z2my : BAT (x,y)}]
The rules generated by AMIE must exceed a head coverage threshold, a confidence thresh-
old and match a maximum rule length. In addition, AMIE imposes a language bias as
a constraint on rule creation to reduce the search space. This avoids mining rules that
are unlikely to predict the existence of a fact. Several extensions to AMIE were proposed
that introduce pruning strategies, approximations and parallelization techniques that
accelerate rule mining [66, 124]. However, a limitation of AMIE and its extensions is the
combinatorial explosion in the rule discovery process.

confpeq(r(x,y) < B) := (2.8)

Furthermore, Anytime Bottom-Up Rule Learning (AnyBURL) [146] uses relation-based
sampling to harness information for rule learning in a bottom-up manner. Starting with
a given relation and an initial path length of two, it collects neighbouring relations to
form rules. The sampled paths are generalised to Horn rules. The path length is increased
iteratively to learn longer rules. Similar to AMIE, candidate rules are selected based on
their confidence scores. There are several extensions to AnyBURL that aim to improve the
quality of the rules produced. Reinforce AnyBurl [147] uses reinforcement learning and
provides confidence and rule length as rewards. SAFRAN [159] uses clustering techniques
to detect redundant rules.

26

2.4. Limitations

2.4. Limitations

Although symbolic methods have clear strengths, such as interpretability, they also present
some obstacles.

Scalability. A major limitation is scalability. Rule learning approaches require the explo-
ration of a search space that grows exponentially with the number of relations. In the
context of large graphs, these methods have scalability limitations [78, 197, 110, 222]. Logic
programming methods such as Datalog and Problog rely on weighted model counting,
which aims to aggregate the assignments of multiple positive worlds. This amounts to a
MAX-SAT problem, which is NP-hard [36].

Specification of prior knowledge. Many symbolic methods, such as Problog or Datalog,
require external prior knowledge expressed in a logical language. This includes general
rules, but also the probability values for grounded terms in Problog, for example. The
provision of handcrafted expert knowledge can be a bottleneck for the system [41]. ILP
methods can extract rules with confidence scores from data. However, the reliability of
the rules depends on the quality of the data and the choice of the confidence threshold
parameter [222].

Noise and uncertainty. Rule-based reasoning techniques have difficulty expressing noise
and uncertainty [36, 78, 222, 100, 128]. This limits the reliability of automatically generated
rules and their applicability to some real-world datasets, which are known to contain noise.
Since information is assumed to be true and deterministic, false information propagates in
symbolic reasoning. Although some methods take confidence values or probabilities into
account, the performance of the model can be affected if the model is not able to detect
and to correct errors and noise. Furthermore, missing data can be a problem in symbolic
reasoning methods [119].

Inflexibility. Symbolic methods are successful for static and well-defined problems and
sometimes fail to generalise to problems beyond a given domain. They also lack the
expressiveness to detect patterns in high-dimensional, unstructured data and necessarily
rely on information at a symbolic level [70, 100].

27

3. Sub-symbolic Reasoning

Sub-symbolic reasoning techniques do not rely on explicit symbols or logical rules. Instead,
they exploit the patterns and structure inherent in data by operating in the continuous space
without resorting to explicit symbols. Geometric interpretations or distance functions
are used to solve reasoning tasks such as node classification and link prediction in a
sub-symbolic manner. Parameterised functions are typically learned through a training
stage where a differentiable loss function is optimised. A subset of sub-symbolic methods
are neural! methods, which refer particularly to the use of deep neural networks [88].

This section introduces relevant sub-symbolic techniques in the context of graphs. These
include knowledge graph embeddings, which represent entities and relations in a graph as
vectors in an embedding space. Furthermore, graph neural networks is a class of neural
networks adapted to the structure of graphs.

3.1. Knowledge Graph Embeddings

The goal of knowledge graph embeddings is to learn a dense representation of the knowl-
edge graph in a continuous low-dimensional vector space that captures the structural
properties of the graph. These embeddings are useful as input for various tasks such as
entity disambiguation and clustering, as well as for downstream tasks such as question
answering and recommendation systems [201]. However, their most prominent use case
is link prediction.

In knowledge graph embeddings methods, entities and relations are encoded as lookup
matrices. In other words, given a knowledge graph K = (&, R, F), d-dimensinal embedding
vectors for the entities in & and the relations in R with dimension d are learned through
an optimization task [171]. In this way, a fact (h, r, t) is represented in the vector space
as (h,r,t), where h and t are the vector representations of the head and tail entities. The
entity and relation embeddings are randomly initialised at the beginning of the training
and optimised over several training epochs using gradient descent [111]. As a result,
embeddings are found that represent the structure of entities and relations in the training
graph. In knowledge graph embedding methods, a score function fscore is defined:

fscore : EXRXE — R, (3.1)

'The terms neuro and neural are used interchangeably in the literature.

29

3. Sub-symbolic Reasoning

.
*, f;core .
X :
-, . f;core

r

h

Figure 3.1.: Visualisation of the translational models TransE (left), TransH (center) and
RotatE (right) in the two-dimensional space.

It takes as input the entity and relation embeddings of a fact (h,r,t) and returns its
plausibility, in other words the likelihood that the fact is true. The exact definition of the
score function depends on the design of the knowledge graph embedding model. Given
two facts (hy, 71, t1) and (hy, 1y, t2), the first is considered more plausible than the second
if fscore (M1, 71, t1) > fscore (B2, 12, 7). The score function typically encodes a distance in the
embedding space and is trained to assign higher scores to true facts than to false facts.
True and false facts are called positive facts and negative facts.

3.1.1. Prominent Knowledge Graph Embedding Methods

In this section, some prominent knowledge graph embedding methods are presented. They
differ mainly in the way they represent entities and relations and in their definition of
the score function. Numerous knowledge graph embedding methods were published in
recent years. For a more comprehensive overview, the following surveys can be considered
[173, 91, 201, 43]. In the literature, knowledge graph embedding methods are commonly
categorised into translational models, semantic matching models and neural models. Neural
models for knowledge graph embeddings are introduced in Section 3.2 together with graph
neural networks.

3.1.1.1. Translational Models

Translational models represent entities and relations of a knowledge graph as points in the
Euclidean vector space and binary relations as translations or other geometric operations.
The plausibility of the facts is calculated with a distance function between the projected
entities.

The seminal translational model is TransE [26] where entities and relations are represented
as vectors h, t,r € R?. Facts are modelled as translations from head to tail embeddings, so
that h + r ~ t. Given a fact (h, r, t), the score function in TransE is defined as the distance
between the head and tail vectors after applying the relation as translation:

f;core(hs r, t) = _||h+r_t||p’ (3-2)

30

3.1. Knowledge Graph Embeddings

where p is the L-p norm. Although TransE is scalable due to its simplicity, it has several
drawbacks. First, it can only represent one-to-one relations, since it forces different entities
to the same representation in many-to-one, one-to-many and many-to-many relations [204,
132]. For example, given the two facts (h,r,t1), (h, 7, t;) € ¥, the score function returns
h + r ~ t; and at the same time h + r ~ t,. This results in t; = t,. Furthermore, TransE
cannot model symmetric relations. The facts (h,r,t) and (t,r, h) can only be captured
simultaneously if r = 0.

As an extension to TransE, TransH [204] is proposed, which can model one-to-many,
many-to-one and many-to-many relations. Each relation is represented by the normal
vector of a hyperplane w, € R? and a vector d, € R? lying in the hyperplane. The head and
tail vectors are at first projected in their relation-specific hyperplanesh, = h—w,hw, and
t, =t— w, tw,. Based on the projected representations, the score in TransH is calculated
as

ﬁcore(h, r, t) = - ”hJ_ +dr _tJ_”%- (3-3)
TransE and TransH are visualised in Figure 3.1.

In RotatE [188], the entities and relations are vectors h,r,t € C4 in the complex space.
Relations are modelled as rotations from the head to the tail entity in the complex space
ast = h © r. © denotes the element-wise Hadamard product. With norm-preserving
real parts |r;| = 1 foreach i € {1,...,d}, r; is expressed as el which corresponds to a
counter-clockwise rotation by 6, ;. RotatE is visualised in Figure 3.1. The score function in
RotatE is denoted as

f;core(h: r,t)=-|hor-tf. (3:4)

Unlike TransE and TransH, RotatE can model symmetry by setting all rotation phases
in all dimensions to multiples of 7, while TransE and TransH force symmetric relations
onto the same vector. However, RotatE cannot represent one-to-many, many-to-one and
many-to-many relations [3].

BoxE [3] is a spatio-relational embedding model that encodes relations as regions in the
embedding space (boxes) and entities as a tuple of two vectors (e, b) € R*, where e defines
the base position of the entity and b defines its translational bump from their base position
to the final embedding depending on the co-occurrence of entities in a fact. In other words,
entities that co-occur in a fact translate each other. The concept of BoxE is illustrated in
Figure 3.2. The entity embedding for an entity e; € R? is expressed as

e = (e; = b;) + by +by. (3.5)

The embedding of an entity is fact-dependent, so that different embeddings are introduced
for an entity. This is why BoxE is suitable for modelling many-to-many, many-to-one and
one-to-many relations. Relations are modelled as rectangles, and a two-ary relation r € R
introduces two rectangles r') and r® € R??. The lower and upper bounds of a relation

box are denoted as 1V and u(” and the box center is defined as ¢! = 0.5 (l(i) + u(i)). The

width of the box is w® = u® —) 4 1 and is increased by one in all dimensions. The
motivation for BoxE is that entity representations must occur in the box of a relation for a

31

3. Sub-symbolic Reasoning

Citizenof
Citizenof®
o
/r'
Canada
Trudeau

citizenOf(Trudeau,Canada) v/
(Trudeau,Canada) X

Figure 3.2.: Example of embeddings in BoxE. The entities Trudeau and Canada trans-
late each other when they co-occur in a fact. The relations capitalof
and citizenOf have two boxes because they have arity two. The
fact CitizenOf(Trudeau, Canada) is considered true in the embedding
model because both points occur in the boxes of the relation CitizenOf.
CapitalOf(Trudeau,Canada) is considered false because they do not occur
both in the box of Capitalof. The figure is inspired from [3].

fact to be true. Therefore, the score function is based on the distance between the entity
embedding el.(h’r’t) and the target relation box r(:

dist (e(h,r,t) r(i)) B egeh,r,et) _ c(i) @w(i) ife; r(i)
i s =

' , (3.6)
el(e”’r’et) —cDlow® -k otherwise.

Element-wise multiplication and division are denoted as ©® and @. k is a width-dependent
factor. Finally, the score function over all n entities and relation boxes is

n
ﬁcore (h’ ra t) = Z HdlSt (e:(el en), r(l))Hp . (3'7)
i=1

Unlike the previous translational models, BoxE can be applied to graphs with n-ary
relations [3].

3.1.1.2. Semantic Matching Models

Semantic matching models use tensor decomposition methods to construct a plausibility
score for a fact given the entity vectors and a relation matrix.

DistMult [214] represents entities as vectors h,t € R? and a relation as diagonal matrix
W, € R4, The score of a fact is computed as

d
Ffcore(h7,1) = KW, t = Z h; - diag (W), - t;. (3.8)
i=1

32

3.1. Knowledge Graph Embeddings

h t

Figure 3.3.: [llustration of DistMult on the left and QuatE on the right. The figure is taken
from [30]

The score function of DistMult is shown in Figure 3.3. Antisymmetric relations cannot
be modelled, since ficore (h, 7, 1) = fscore (2, 1, h) Which forces all relations to be symmetric
[79].

ComplEx [194] extends DistMult in the complex space to overcome this limitation. Entities
and relations are modelled as vectors in the complex space h,r,t € Ck and the score
function is defined based on the Hadamard product and the real component Re(-) of the
complex-valued output vector.

ficore(h,7,t) =Re(hOrot) (3.9

Thanks to the commutativity of the Hadamard product in the complex space, ComplEx
can model antisymmetric relations.

QuatE [227] uses hypercomplex quaternions, where each value has one real and three
imaginary components: Q = a + bi + ¢j + dk. In this notation a, b, ¢, d are real numbers
and i, j, k are imaginary parts. Quaternions allow more expressive rotations in two planes
to model entities and relations, see Figure 3.3. Given a fact (h, r,t), the representation
of the head entity & and the tail entity t are h = {ah + bpi+cpj+dik : ap, by, cp, dy € Rk}
and t = {a; +bi+cj+dik :a;,bi,c,d; € Rk}. The relation r is represented by r =
{ar +byi+c,j+dk :a,bcpd € Rk}. The score function computes the Hamilton prod-
uct ® between the rotated head with a normalized relation vector r* and the tail entity:

fscore(h,r,t) =h®r" - t. (3.10)

Leveraging representations in the hypercomplex space, QuatE enables richer and more
expressive semantic matching between head and tail entities through the Hamilton product.
QuatE can be seen as a generalization of DistMult and ComplEx.

3.1.2. Loss Function

The training goal in knowledge graph embeddings is to find a representation of the
graph that maximises the plausibility of positive facts while minimising the plausibility of
negative facts. Several loss functions L are considered.

33

3. Sub-symbolic Reasoning

The Margin-based ranking loss [26, 204] encourages the discrimination between the scores
of positive and negative facts. It is defined as

L - Z Z max (0’ ﬁcore(h, r’ t) + Y - f;core (h/a r/3 t/)) 5 (3.11)
(hrt)eF (W' t")eN

where ¥ is the set of positive facts, N is the set of negative facts and y > 0 is a hyperpa-
rameter defining the margin between positive and negative facts.

The Binary cross entropy loss [55] takes into account the labels [: & X R x & — {0, 1}" for
positive and negative facts and measures the distance between them and the predicted
scores for the facts fiore : & X R X & — R". The binary cross entropy loss over n facts is

defined as
1

L=-—=-
n

3 (1108 (frcore(B 1, 00) + (1= 1) - log (1= feore (1, 8))) . (3.12)

1

Other popular loss functions used in the context of knowledge graph embeddings are the
mean squared error loss or the adversarial sampling loss [188, 151].

3.1.3. Negative Sampling

As mentioned above, knowledge graphs usually contain only positive facts. However,
negative facts are essential during training to avoid overgeneralization to the positive
facts. For this reason, negative facts are commonly generated through sampling under
the stochastic local closed world assumption [26]. Assuming that the unobserved facts are
false, a set of negative facts N is created by randomly replacing the head or tail entity of a
positive fact with another entity in the graph [26]. This way, a set of negative facts N is
obtained:

Ni(hr) ={(hr,t) |t e EAL £t}
Niu(r,t) ={(W,r,t) | €e EAK + h}

N = U Ni(h, 1) U Ni(r,).

(h,r,t)eK

(3.13)

N}, is the set of negative facts with corrupted heads and M, is the set of negative facts
with corrupted tails. Together, they form the set of negative facts N. In the following, this
method is termed uniform negative sampling [9].

The generation of negative facts is acknowledged to be a challenging problem [121, 229,
228, 215]. The random replacement of head and tail entities carries the risk of generating
false negative facts. However, since the number of true positive facts in a graph is generally
orders of magnitude smaller than the potential set of true negative facts (|N| > |F), the
probability is small [9]. Some works introduce techniques that are based on the structure
of the graph to decrease the probability of generating false negative facts [7, 229]. For
example, Bernoulli negative sampling [204] is introduced, where the characteristic of the
relation (one-to-many, many-to-one) is decisive for replacing the head or the tail.

34

3.1. Knowledge Graph Embeddings

3.1.4. Evaluation

Knowledge graph embedding methods are evaluated with ranking-based metrics in the
context of a link prediction task [171, 9]. They quantify how successfully the model
can complete an incomplete fact by scoring candidate entities. A distinction is made
between head prediction (?,r, t) and tail prediction (h,r,?), where missing heads or tails
are predicted. Some works also consider relation prediction (h,?,t) [125]. Since the scores
are only meaningful in a comparative sense, rank-based metrics are used. For this purpose,
the set of negative facts V is created by uniform negative sampling based on the facts in
the test set, see Section 3.1.3. Then, the score function of the knowledge graph embedding
model is used to score all facts, including the true test facts. The rank of a fact is its position
in the sorted list of scores. The positive test facts should preferably receive a higher rank
than the negative test facts.

Rank-based metrics aggregate the ranks of a set of positive facts # in the test set into one
metric. They measure the ability of a model to discriminate positive and negative facts.
The following rank-based metrics are commonly used for knowledge graph embedding
evaluation in the literature.

« The Mean Rank (MR) is the average rank of the positive fact f € F against the
negative facts:

1
MR(F) = i Z rank(f). (3.14)

feFr

The smaller its value, the better the model performance.

« The Mean Reciprocal Rank (MRR) is defined as the mean of the reciprocal ranks:

1 1
MRR(F) = ﬁ;‘f k) (3.15)

Unlike MR, MRR has a fixed range of values from 0 to 1, which makes it easier to
interpret. Higher values indicate better performance.

» The Hits@k denotes the proportion of positive facts whose rank does not exceed a
constant value k with k > 0 among all positive facts:

[{f € F | rank(f) < K}

Hits@k (F) = 7

(3.16)

The smaller k, the stricter is the metric. The Hits@k also lies between 0 and 1 where
larger values indicate better performance.

35

3. Sub-symbolic Reasoning

3.1.5. Model Expressiveness and Inductive Capacity

In principle, knowledge graph embedding methods are seen as dimensionality reduction
methods. The fewer dimensions and less expressiveness a model has, the more regularities
are captured in the representations. However, this carries the risk of unintended inferences
[79]. It is therefore desirable that a model with enough parameters can theoretically
capture the entire training graph and accurately distinguish positive and negative facts. A
model with this property is called fully expressive [3, 108].

Definition 3.1.1 (Full expressiveness). Given the set W of all possible facts over a finite
set of relations R, a knowledge graph embedding model M is fully expressive if, for any
two disjoint sets ¥ C W of positive facts and N € ‘W of negative facts, there exists a
finite-dimensional model configuration for M that maps all facts in ‘W to True and all facts
in F to False.

While the expressiveness of a model determines whether the training graph can be fully
captured with a sufficient number of parameters, the inductive capacity refers to the ability
of a model to generalize beyond the training set. The inductive capacity of knowledge
graph embedding methods is studied by theoretically analyzing whether common inference
patterns can be captured. An inference pattern is a specification of a logical property that
can exist in a knowledge graph, which, once learned, allows further inferences from
existing facts. The following inference patterns are commonly studied in the literature [3,
108, 30].

Definition 3.1.2 (Symmetry). Given a relationr € R, a symmetry pattern is a rule of the
form Vx,y : r(x,y) — r(y,x), wherer € R.

Definition 3.1.3 (Antisymmetry). Given a relation r € R, an antisymmetry pattern is a
rule of the form Vx,y : r(x,y) — —r(y,x), wherer € R.

Definition 3.1.4 (Inversion). Given the relations ry,r, € R, an inversion pattern is a rule
of the form 1y if Vx,y : r2(x,y) = r1(y,x), wherer; # r, € R.

Definition 3.1.5 (Composition). Given the relations ry, r2, 3 € R, a composition pattern
is a rule of the form Vx,y,z : r2(X,y) Ar3(y,z) — r1(x, wherez), r1 # r, #r3 € R.

Definition 3.1.6 (Mutual exclusion). Given the relations ri,r, € R, a mutual exclusion
pattern is a rule of the form Vx,y: r1(x,y) A r2(x,y) =L, wherer; # r, € R.

Definition 3.1.7 (Hierarchy). Given the relations ri,r, € R, a hierarchy pattern is a rule
of the form Vx,y:1,(x,y) Ara(X,y) = 1r1(X,y), wherer; # r, € R.

36

3.1. Knowledge Graph Embeddings

Pattern BoxE | ComplEx | DistMult | QuatE | RotatE | TransE | TransH
Symmetry v v v v v X X
Antisymmetry v 4 X 4 v 4 v
Inversion v v X v 4 v v
Composition X X X X v v v
Hierarchy v v v v X X X
Mutual exclusion 4 4 4 4 v 4 4
Full expressiveness v v X 4 X X X

Table 3.1.: The inference patterns captured by the presented knowledge graph embedding
methods. The results are taken from the literature [3, 79, 188, 30].

Space Complexity | Time Complexity
TransE O(|Eld + |R|d) 0(d)

TransH O(|&|d + |R|d) o(d)

RotatE O(|&ld + |R|d) 0o(d)

BoxE O(|&] +2|R|d) 0(2d)

DistMult | O(|&E|d + |R]|d) 0(d)

ComplEx | O(|E|d + |R|d) O(d)

QuatE O(|&|d + |R|d) 0(d)

Table 3.2.: Comparison of the space and time complexity of knowledge graph embedding
methods. |E] is the number of entities in the graph and |R| is the number of
relations. d is the dimension of the vector representation. The results are taken
from the literature [9].

3.1.6. Comparison of Knowledge Graph Embedding Methods

This section gives an overview of how the presented knowledge graph embedding methods
compare with each other in the aspects of expressiveness, complexity and inductive
capacity. The results are taken from the literature [3, 79, 188, 30] and are summarized in
Table 3.1.

Expressiveness. While DistMult, RotatE, TransE, TransH and DistMult are known to be
not fully expressive, BoxE was shown to be fully expressive [3]. The semantic matching
models ComplEx and QuatE are fully expressive, but generally less interpretable than the
translational models [3].

Complexity. The above-mentioned approaches also differ in terms of the number of
parameters and their time complexity, see Table 3.2. All the presented embedding methods
have a constant time complexity. Regarding space complexity, BoxE additionally stores
the translational bump vectors.

Inductive Capacity. Further, the methods differ in their inductive capacity. Regarding
symmetry, TransE and TransH cannot represent symmetric relations, since they would
force the relation vector of a symmetric relation to be zero. On the contrary, RotatE can
represent symmetry if the rotation consists only of multiples of 7. In DistMult, relations

37

3. Sub-symbolic Reasoning

are inherently symmetric, since f(h,r,t) = f(t,r, h) holds for any relation. BoxE can
capture symmetric relations by defining equal boxes. QuatE can represent symmetric
relations by setting the imaginary components to zero.

Antisymmetry can be captured by the translational models TransE, TransH, BoxE and
RotatE. Since all relations in DistMult are symmetric, it cannot handle antisymmetry.
ComplEx and QuatE, however, can canpture antisymmetry by using only imaginary

embeddings.

The translational models TransE, RotatE and TransH can capture inversion when r; =
—r2. However, limitations occur when it comes to multiple inverse relations, such as
ri(x,y) & ra(y, x), r2(x, y) © r3(y,x),r3(x,y) < r1(y,x). This implies the symmetry of
rl: ri(x,y) < r1(y, x), which cannot be captured by TransE and TransH, while it can be
captured by RotatE. BoxE captures inversion by setting rl(l) and rz(z) as well as rl(z) and rz(l)
to identical boxes. DistMult cannot capture inversion, while ComplEx and QuatE can [3,

227, 194].

The translational models TransE, TransH and RotatE cannot capture hierarchy as this
would implicitly enforce relational equivalence. The semantic matching models can capture
hierarchy, but not in a generalized way. To simultaneously satisfy the rules r;(x,y) —
r3(x,y) and ro(x,y) — r3(x, y), it must hold that r1(x,y) — ra(x,y) or r2(x,y) — ri(x,y)
[79]. BoxE can capture hierarchies when the box of r; encapsulates the box of r;.

Composition can be captured by translational models. In TransE and TransH, a relation r3
is composed of r; and r; if r; + r, = r3. In RotatE, this is the case for r; © r, = rs. However,
generalized compositions with multiple relations cannot be captured as r1 (x, y) A2 (y, z) —
r3(x, z) and rq(x,y) A rq(y, z) — r3(x, z) force ry = rq [3]. The design of the translational
bumps prevents BoxE from capturing compositions [3]. It is shown that ComplEx and
DistMult cannot capture composition patterns [79].

The aforementioned translational models TransE, TransH, RotatE and BoxE can all capture
mutual exclusion. ComplEx and DistMult cannot capture mutual exclusion for several
relations as r1(x, y) A rp(x,y) —L and ri(x,y) A r3(x,y) —L enforces ry = rs.

3.1.7. Limitations

While knowledge graph embedding methods have shown various capabilities in capturing
relationships between entities in knowledge graphs, they also suffer from a number of
limitations.

Transductive learning. First, most knowledge graph embedding approaches are inherently
transductive. They can only learn embeddings for entities and relations observed in the
training data. Inference about unseen entities poses a significant challenge. One way
to enable inductive inferences about unseen nodes is to use features such as text and
images, in node-attributed graphs [2, 225, 193]. However, the majority of knowledge graph
embedding approaches are not designed to process such information.

38

3.2. Graph Neural Networks

Robustness to noise. As mentioned in Section 1.1.2, knowledge graphs may be subject
to noise. In contrast, many state-of-the-art knowledge graph embedding methods do not
explicitly take noise in the training graph into account. This assumption is often unrealistic,
potentially leading to bias in the learned embeddings and performance degradation [23].

Interpretability. The interpretability of knowledge graphs may be compromised in the
vector space. The learned embeddings do not directly translate into human-understandable
representations. Interpreting the exact meaning of individual dimensions or components
in the embedding space can be challenging. In general, interpretability decreases as the
complexity of the embedding space increases.

Incompleteness. Knowledge graphs are typically trained under the local closed-world
assumption where negative facts are generated with uniform negative sampling, see Sec-
tion 3.1.3. However, given that many real-world knowledge graphs are highly incomplete,
this procedure has the potential to introduce false negative facts. This can lead to bias
in the learned embeddings and incorrect inferences [23]. Furthermore, the commonly
used rank-based metrics are inappropriate under the open world assumption and become
misleading and inconsistent in the context of incomplete data [216]. In addition, the ability
to learn patterns in a knowledge graph depends on the prevalence of the pattern in the
training graph. Incomplete information can therefore lead to the failure to capture patterns
at inference [171, 78].

Capturing semantics. Although the ability of knowledge graph embeddings to capture
common inference patterns is widely discussed in the state-of-the-art 3, 188, 30], capturing
compositionality and especially transitivity as general patterns remains a challenging
problem [23]. Furthermore, complex constraints are often neglected [36]. For this reason,
knowledge graph embeddings often fail to be compliant with prior knowledge.

Neglecting prior knowledge. Further, many knowledge graphs follow a given schema or
ontology that formulates prior knowledge about the relations and entities in the graph, as
mentioned in Section 1.1.2. Common knowledge graph embedding approaches focus only
on facts and ignore ontological information [36, 79, 77, 102]. Consequently, there is no
guarantee that the learned embeddings obey the rules of prior knowledge, as this depends
on the facts observed during training as well as on the inductive capacity of the chosen
model. Thus, knowledge graph embeddings risk losing semantics in the embedding space
and do often not provide predictable inference [83].

3.2. Graph Neural Networks

While knowledge graph embeddings find unique embeddings for entities and relations
that capture the structure of a knowledge graph, the idea of Graph Neural Networks (GNNs)
[180] is to refine node representations guided by the graph topology. In essence, GNNs
transform node vector representations by iteratively updating them with permutation

39

3. Sub-symbolic Reasoning

Figure 3.4.: Visualisation of the update of the representation h; of the target node v; in the
k-th GCN layer. The representations of the first-order neighbours h¥, . .. ,h’g
are weighted with normalization factors ¢,, and aggregated to derive the
updated representation h’f” for v;.

invariant message passing layers. GNNs typically expect as input a node-attributed graph.
A node v to be represented is called target node. In detail, the target node receives messages
from its adjacent nodes that are used to update the target node’s vector representation x*.

In vector notation, the function of the k-th message passing layer is formalized as
hit = combine(hz]f, aggregate(my,|u € N1(v))). (3.17)

Here, h* € R? is the d-dimensional vector representation of the target node v of the
previous layer. The neighbourhood N (v) is the first-order neighbourhood of v. In the
following notations, the index is omitted for readability. The messages m,, are defined
based on the node representations h,, h,, and the edge features e, ;. The operators combine
and aggregate denote functions where aggregate is permutation invariant.?

An arbitrary number L of GNN layers can be stacked. This way, node representations
are refined by incorporating L-hop neighbourhood information which provides a strong
inductive bias on the graph structure. The functions aggregate and combine contain
learnable parameters that are optimized in an end-to-end supervised manner in the context
of downstream tasks such as node classification. GNN methods differ in the way they
aggregate information across their layers. In the following, graph convolutional networks,
graph attention networks and relational graph neural networks are introduced.

3.2.1. Graph Convolutional Networks

Graph Convolutional Networks (GCNs) [115] are known for generalizing the convolution
operation in convolutional neural networks [122] to graphs. They update node representa-
tions by considering the weighted sum of the local neighbourhood. The parameters are

2The notation h, is not to be confused with the notation & for the head entity of a fact in Section 3.1. h, in
this section describes a vector representation for any node in a graph

40

3.2. Graph Neural Networks

softmax, G

N /2N =

Figure 3.5.: Visualisation of the update of the representation h; of target node v; in the k-th
GAT layer. Left: Illustration of the attention mechanism a(Wh,, Wh,) in GAT,
parametrized by a weight vector a € R??. Right: An illustration of multi-head
attention with K = 3 by node vy on its neighbourhood. Different arrow styles
and colors describe different attention heads. The aggregated features from
each head are concatenated or averaged to obtain h’f“. The figure is adapted
from [196].

shared across all nodes in the graphs. The function of the k-th GCN layer for target node
v is formalized as

1
Wl = o Z — WHH (3.18)
/] Cou u
ueN(v) =

with ¢, , = 4/|[N(u)| - IN(v)| and activation function o(-). The update of the node repre-
sentation h¥ to h¥*! is visualised in Figure 3.4. In matrix notation, the function of a GCN

layer is based on the normalised adjacency matrix D 2AD"? of the input graph:
H' =5 (f)‘%Af)‘%HkW") . (3.19)

Here, A = A + L is the adjacency matrix with self-connections in the form of the identity
matrix I. Self-connections take the target node’s representation of the previous layer into
account. The diagonal matrix D where D;; = > j A; j is used to normalize the updates of a
node. The matrices D, I, A, A have the dimension R™". Further, W* € R%*dk+1 represent
the trainable weight matrices. The input and output dimensions of the layer are dy and
di+1. For GCN, the aggregate function is the weighted average of the neighbouring node
representations. The combine function is the sum of the aggregated messages with the
node representation itself, normalized by the node degree.

3.2.2. Graph Attention Networks

While in GCNs the impact of neighbouring nodes is normalized by the node degree,
Graph Attention Networks (GATs) [196] employ the attention mechanism [195] to learn the

41

3. Sub-symbolic Reasoning

-

Figure 3.6.: Visualisation of the update of the representation h; of target node v; in the
k-th RGCN layer. The graph has three different types of relations: r{, 7, and 7.
The relation-specific neighbourhoods are N (v) = {0y, 04},
and N (v) = {vs,0,} with the respective normalization factors c;',, and
c,,- The weight matrices W'1, and W'* are relation-specific.

importance of a neighbouring node for the target node. To this end, a shared attention
mechanism a : RY x RY — R computes attention coefficients
eou = a(Wh,, Why) (3.20)

that determine the importance of the feature vector of node v for node u. The attention
coeflicients are calculated for the first-order neighbours and normalized with the softmax
function:

exp (e
0y = softmaxy (eyy) = P (€ou) . (3.21)
% jeNo) €XP (€0,)
The function of the k-th GAT layer is
Wi =0 > anWhE |, (3.22)

ueN(v)

To stabilize the learning process, multi-head attention can be applied. Therefore, the
attention mechanism is executed K times independently and the results are averaged or
concatenated. The computation of the attention weights and the function of a GAT layer
are visualised in Figure 3.5.

3.2.3. Relational Graph Neural Networks

The presented methods GCN and GAT are limited to homogeneous graphs. As extension
to this, Relational Graph Neural Networks (RGCNs) [181] apply the concept of GCN to
multi-relational graphs by introducing relation-specific weight matrices W € R%>%+1_ In

42

3.2. Graph Neural Networks

an RGCN layer, the node features are transformed with the normalized sum of adjacent
edges:

1
Wt =o' > Cr—W’fh’,j+W’gh§ : (3.23)
reR ueNr (v)\o oY

The update function of a RGCN layer is shown in Figure 3.6. The set of neighbour nodes
of v under the relation r € R is denoted as N"(v). ¢}, is a relation-specific normalization
hyperparameter. The function of an RGCN layer is illustrated in Figure 3.6. Since the
number of trainable parameters increases rapidly with the number of relations, potentially
leading to overfitting, regularization methods are often applied in the context of RGCN
[181].

3.2.4. Neural Knowledge Graph Embeddings

Neural network layers and particularly graph neural network layers can also be used to
embed knowledge graphs. RGCNss, for example, are commonly used as link prediction
methods. While they can be applied in an inductive setting on node-attributed graphs,
they can also be used in an transductive context to learn and refine entity vectors. In this
case, the entity representations are randomly initialized and optimized together with the
weight matrices during training. In this context, the RGCN layers in Equation 3.23 serve
as encoders to update node representations and DistMult in Section 3.1 is employed as a
decoder to obtain a link prediction score. In this setting, RGCN is categorized as a neural
knowledge graph embedding method, since the layers of the graph neural network update
the representations of the entities. However, RGCN as a knowledge graph embedding
method is limited to the inductive capacity of the DistMult decoder.

Beyond RGCN, other methods based on neural network layers exist that can be used
refine knowledge graph embeddings. Prominent examples are Neural Tensor Networks
[187], ConvVE [55] or ConvKB [155]. Furthermore, the experiments in [130] show that
message passing techniques are not necessarily helpful in the context of knowledge graph
embedding learning and link prediction and that equal performance can be achieved with
simple feedforward layers.

3.2.5. Limitations

Despite their effectiveness in refining representations of nodes based on graph structure,
graph neural networks have some limitations.

Oversmoothing and Oversquashing. With an increasing number of GNN layers, the mes-
sage passing calculation includes more nodes. In this case, the representations of different
nodes may converge to equal vectors, making them less distinguishable. This problem is
known as oversmoothing [199, 213, 175]. Moreover, the aggregation of too much infor-
mation into a single vector can lead to a representation that is less informative, which is

43

3. Sub-symbolic Reasoning

known as oversquashing. [15]. Therefore, the choice of an appropriate number of GNN
layers is important for learning meaningful representations.

Multi-relational and Heterogeneous Graphs. Some GNN methods are limited to certain
types of graphs. Many prominent graph neural networks, including GCN and GAT, are
designed for homogeneous graphs. However, many graphs in practice are multi-relational,
including knowledge graphs. Applying methods for homogeneous graphs to heterogeneous
graphs leads to the aggregation of disparate information, which can result in reduced
performance [32]. RGCN and other methods [223, 203] encode multiple relations in a graph
with separate matrices. However, these models are heavier in terms of parameters.

Interpretability. As a subcategory of deep neural networks, GNNs are used to learn
meaningful feature representations with their message passing layers [4]. Although they
are effective at capturing graph structure, they are difficult for humans to understand and
interpret because of their large number of parameters. Furthermore, no strong guarantees
are given that encoding with GNN is faithful and trustworthy at inference.

Scalability. Deep GNN architectures with many message passing layers can increase the
computational cost of training and inference. As the number of parameters in the model
grows, so does the computational complexity, making it difficult to scale GNNs to large
graphs. Further, the message passing itself aggregates the node neighbourhood, which
grows exponentially with the number of layers in the network. Several methods tackle
this problem with sampling techniques [80, 59, 221] or distributed training [62].

44

4. Neuro-Symbolic Reasoning

The previous chapters have introduced and exemplified relevant techniques and concepts
in the field of symbolic and sub-symbolic Al Historically, the fields of symbolic and sub-
symbolic Al developed separately [100]. While symbolic AI was the dominant paradigm
in Al research before 1980, it received less attention after the major breakthroughs in deep
learning around the year of 2012 [122].

The two lines of research differ significantly. In sub-symbolic Al, problems are formalised
as a quantitative and differentiable objective function that is optimised using gradient
descent. This allows for efficient pattern recognition and feature extraction from high-
dimensional data without human intervention. For this reason, sub-symbolic approaches
are well suited for perception problems where raw sensor data is directly processed, such as
image and speech recognition. Sub-symbolic approaches are robust to noisy and imperfect
data. Furthermore, once the model parameters are trained, the methods usually scale well
at inference.

Symbolic Al does not achieve good marks in these aspects. Many approaches do not scale
well at inference, which limits their applicability in the context of real-world use cases.
Further, they rely on exact and symbolic presentations of knowledge that often fail to
capture noise and uncertainty [88, 141]. Nevertheless, despite the recent hype around
machine learning and deep learning, concerns are raised. Some voices call for more trust,
security, interpretability and accountability for deep neural networks, which are often
criticised as black-box models [68, 69, 142, 190]. In addition, sub-symbolic approaches are
highly dependent on data [189]. While they can process high-dimensional data, they also
require a rich and extensive data source. Their usefulness is limited in cases where data is
scarce and expensive. Even when expert knowledge is available, sub-symbolic Al does
often not provide mechanisms to exploit it. Furthermore, sub-symbolic methods are prone

Sub-symbolic Al

Figure 4.1.: Neuro-Symbolic Integration = Symbolic Al + Sub-symbolic Al

45

4. Neuro-Symbolic Reasoning

Symbolic

Sub-symbolic

Discrete representations
Language-like representations
Reasoning

Rigid and static

Human intervention

Prior knowledge

Feature engineering
Requires no data/small data
Precise input

Reasoning problems
Interpretable

Knowledge transfer

Not scalable at inference

Continuous vector representation
Numeric representations
Learning

Flexible and adaptive
Automatic pattern extraction
Inductive bias

Raw sensor data

Requires big data

Noisy or incomplete input
Perceptual problems
Black-box

Overfitting

Scalable at inference

Table 4.1.: Overview of the characteristics, strength and weaknesses of symbolic and sub-
symbolic Al Some points are inspired from [100].

to overfitting and often suffer from limited generalization capacity beyond the training
data distribution [18].

Symbolic Al methods provide an answer to these limitations, despite their own previously
mentioned shortcomings. With their symbolic representations in formal logic, they offer a
high degree of comprehensibility and provable correctness that goes beyond statistical
assessment. The ability to explain and reason about intermediate steps and decision making
makes symbolic Al approaches inherently interpretable. Furthermore, the use of symbolic
representations allows for leveraging expert knowledge, which is often compositional
and can be shared between closely related domains. Symbolic knowledge can also help in
situations where less data is available.

Thus, the strengths and weaknesses of both lines of research complement each other. In
view of this, neuro-symbolic AI [19, 88, 126, 67] explores the combination of both paradigms
in a favourable way, with the objective to leverage their mutual strengths and circumvent
their respective limitations, as visualised in Figure 4.1. Neuro-Symbolic Al has recently
gained increasing attention [107, 17, 90]. With an eye on the future, the field has been
described as a "path forward to much stronger Al systems" and even as a "major stepping
stone towards human-level artificial intelligence" [179]. The combination of sub-symbolic
and symbolic Al is also biologically motivated, as it strongly resembles human intelligence
and learning. Humans can learn from experience as well as from explanation. While the
former is intuitive and implicit, the latter is explicit and cognitive. These systems are also
designated as System 1 (fast thinking) and System 2 (slow thinking) [105]. The pattern-
matching abilities in neural networks learned through repetitive training correspond to
System 1, while symbolic reasoning corresponds to System 2.

46

4.1. Desiderata of Neuro-symbolic Al

4.1. Desiderata of Neuro-symbolic Al

Since the aim of neuro-symbolic Al is to combine the advantages of both fields in a
favourable way, some desired aspects of neuro-symbolic Al approaches are summarised as
follows.

+ knowledge-aware
Neuro-symbolic methods should be able to take into account prior knowledge, such
as expert and common sense knowledge.

+ robust
Neuro-symbolic approaches should be applicable to high-dimensional and raw data
that may be imperfect, with noise and incompleteness. Noise in data is understood
as random or irrelevant variations that are not part of the pattern to be learned.
A model is considered robust if its performance remains stable or is only slightly
affected by noise.

+ scalable
Neuro-symbolic methods should be scalable. Their applicability should go beyond
toy problems and consider real-world scenarios that often involve large amounts of
data. Sub-symbolic techniques could benefit from symbolic knowledge to scale up
training, while symbolic techniques could benefit from sub-symbolic techniques to
speed up inference.

« interpretable
A model is considered as interpretable if humans can understand the cause and
reasoning steps of its predictions and decisions [150]. Symbolic techniques should
contribute interpretable representations and understandable reasoning processes to
neural black-box models.

» accurate
Neuro-symbolic methods should perform as well as or better than comparable purely
symbolic or sub-symbolic methods. This also means that neuro-symbolic methods
can potentially achieve similar results with the use of fewer resources.

A key challenge in neuro-symbolic integration is the symbol grounding problem [84]. While
sub-symbolic approaches rely on continuous and differentiable vector representations,
symbolic Al operates on discrete and language-like representations. Translating repre-
sentations from one to another while preserving relevant information is relevant for the
design of neuro-symbolic Al approaches.

In the state-of-the-art, several ways are proposed to achieve the integration of symbolic and
sub-symbolic Al approaches. In the following sections, several neuro-symbolic methods
will be presented. Since the focus in this thesis lies on graph-structured data, Section 4.2
introduces general neuro-symbolic frameworks and discusses their applicability to graphs.
Then, Section 4.3 presents methods specifically designed for knowledge graphs.

47

4. Neuro-Symbolic Reasoning

Knowledge in the loss Knowledge as additional Neural networks in a logic
function layer program

K Learning Learning

§
vl B -

Figure 4.2.: Schematic illustration of ways to integrate knowledge with neural networks
for general neuro-symbolic frameworks.

NN K

4.2. Prominent Neuro-symbolic Frameworks in the Context of
Graph Data

In this section, the neuro-symbolic frameworks Neural Probabilistic Programming [139, 95],
Logic Tensor Networks [14] and Knowledge Enhanced Neural Networks [48] are discussed.
The main difference between these approaches is the way in which they address the
symbolic grounding problem and integrate their symbolic and sub-symbolic components,
as visualizes in Figure 4.2. Neural Probabilistic Programming approaches employ neural
predicates in a logic program. Logic Tensor Networks represent a logic program in fuzzy
logic and encode it as a loss function of a differentiable learning problem. Knowledge
Enhanced Neural Networks encode logical rules as differentiable layers that modify the
predictions of a neural network. The following literature can be consulted for a more
extensive overview [88, 50, 13, 67].

4.2.1. Neural Probabilistic Programming

DeepProblog [139] is a neural probabilistic programming language based on ProbLog, see
Section 2.2. In essence, it extends ProbLog with neural predicates. While ProbLog assumes
that the fact probabilities p :: f are known, neural predicates act as perception model
My with learnable parameters 6, which transforms input data into a probabilistic fact.
Therefore, the output of a neural network Y given an input X is normalized to [0,1] C R
and interpreted as probability in the ProbLog program. Neural predicates thus act as
a bridge between the logic program and the perception of the input data. A dataset in
DeepProblog is considered as a set of tuples Q consisting of sensor data x € R¢, and labels
with desired success probabilities g for the queries. For each data point of the dataset
(x,), the neural predicates transform x into a probabilistic fact p(x) :: f that is captured
by a Datalog program.

48

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

Example 4.2.1 (DeepProblog). Consider the MNIST addition as an example. Given two
images of handwritten digits, the task is to determine the sum of the digits in the images.
The dataset contains tuples of two images and the sum of the digits in the images, e.g. ((H4,
El), 8). Two neural predicates are used to recognise the handwritten digits in the images
and predict one of the values in {0, ..., 9}. A neural predicate is formalized as follows:

Mpg(mnist_net, x, [0, ...,9]) :: digit(X,Y).
For example, the output for the image B would be a sequence of ten truth values
0.01 :: digit(H,0),0.3 :: digit(H, 1),...,0.1 :: digit(Ed 9),

that are interpreted as probabilistic facts in the DeepProbLog program. For example,
the fact 0.3 :: digit(H, 1) describes that the image B is recognized as digit 1 with
probability 0.3. Further, the concept of addition is introduced in the logic program.

| Mg (mnist_net, X, [0, ... , 9]) :: digit(X,Y)
2 addition(X,Y,Z) :- digit(X, "N1"), digit(Y, "N2"), Z = N1 + N2

Inference in DeepProblog works essentially as in Problog, based on weighted model
counting, but the prediction of the neural predicates are used as fact probabilities, see
Section 2.2. However, in order to determine the parameters of the neural predicates,
DeepProbLog relies on a training stage. The goal is to learn the parameters 6 of the
perception model My. The training objective is the loss L of the output probability of
the program and the desired success probability g of the query, averaged over all samples

(p(x),9) c Q.

1
arg min— Z L(Pf(:x(p),q). (4.1)
a.p)eQ

The final success probability is calculated in the logic program Pg’:x (p) In DeepProbLog,
only the success probability of the query is known and used as supervision. Since no
intermediate labels are given for the neural predicates, the gradients must be derived in
the logic component in order to perform backpropagation and update the neural network
parameters during training, despite the lack of direct supervision. To define gradient
updates in logic, DeepProbLog relies on a gradient semiring. It determines how probabilities
and their differentiation are handled when reasoning with a logic program. The elements

of gradient semiring are tuples (p, g—i), where p is the probability of a probabilistic fact

and ‘;—g is the partial derivative of that probability with respect to the parameter 6. Then,
the semiring addition @, multiplication ® and their neutral elements are defined as

(al’ﬁg) ® (bl’z) = (al +b1,a +;2>) ,e® = (0,_()))
e n) o)

The second part of the tuple shows the gradients based on derivative rules. By modelling
the bottom-up evaluation of a query in the SDD in a differentiable way, gradients are

49

4. Neuro-Symbolic Reasoning

backpropagated to the parameters of the neural predicates, even though their outcome is
only indirectly supervised in the form of the final outcome of the query.

Experiments on several use cases show that DeepProblog converges faster than pure
neural networks and is more robust to noise [139]. However, the size of the proof set to be
considered for evaluating a query |S,| increases exponentially with the number of input
facts. This poses a scalability problem, relevant for both inference and training, and limits
DeepProblog to small use cases [95, 178].

Extending DeepProbLog, Scallop [95] builds on DeepProbLog and sets out to make inference
and learning more scalable. Essentially, it proposes a top-k semiring to infer the success
probability of a given query in a more efficient way. The idea of the top-k proof semiring is
to approximate the calculation of the success probability by including only the k most likely
proofs, where k > 1 is a hyperparameter. Therefore, the operators ®* for conjunction and
@ for disjunction are redefined:

S 0% Sy = Top (81 ®Sy), S @™ Sy = Top, (S ®S,) . (4.3)

Prior to the probability calculation, the proofs are ranked by their likelihood and only the
top k ranked proofs are considered. The resulting set of proofs is determined as

(k) (k)

o= P |3 (4.4)

F derives q \ feF

This way, the calculation of the success probability of a query g is approximated by
considering only the set of the k most likely proofs .§q instead of all proofs S: Pr(q) =
Pr(Sy) = Pr(§q). This modification results in a constant complexity of |§q| = O(k).
Experiments show that Scallop scales significantly better than DeepProblog without
sacrificing accuracy [95].

4.2.1.1. Application to Graph Data

In [95], DeepProblog and Scallop are applied to the kinship reasoning task from a natural
language context on the ClutRR dataset [184]. Given a natural language fragment about
a set of characters and kinship relations between them, the task is to reason about an
implicit relation provided as query. The query relation itself is not contained in the text,
but can be inferred from the relations described in the text using a logic program. In the
task, only a label is given for the implicit relationship in the query. This, together with a
logic program about kinship relations, can be used to learn the parameters of a language
model for extracting the facts from the text. In the experiments in [95], the parameters of
a RobertA [134] model for text embedding learning and an MLP as relation extractor are
optimised.

Example 4.2.2 (Kinship Reasoning with Scallop). Consider an instance of the Clutrr
dataset, which consists of a query and a text extract in Figure 4.3. Here, the text describes

50

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

Context Query
Vincent is Dwight's ??

brother
Vincent
7 is
4
son 7 ?

Reasoning

0: Dorothy and her

brother Dwright went

to the basketball game

and had a great time. Neural Net
1. Dorothy took her

Dwight’s
nephew.

son Vincent to the park
in the afternoon.

Figure 4.3.: [llustration of the kinship reasoning task with Scallop on the Clutrr dataset.

the three characters Dorothy, Dwright and Vincent. The query to be answered is how
Vincent and Dwright are related to each other. Only supervision for the query relation is
available during training. First, the RobertA model returns text embeddings. Then, for all
pairs of entities that occur in a sentence, the MLP outputs a score for each possible kinship
relationship in the domain, e.g. [0.4, (daughter, dwight, dorothy)]. This results in
22 . 21 probabilities with 21 relations and 2 characters per sentence. These probabilistic
facts are given to the logic program, which in this example contains compositional rules
of the family relations, e.g. (daughter - daughter - granddaughter). The probability of
the query relation can be inferred with the logic program. The loss between the query
result and the prediced probability can be computed and the gradients for the MLP and
RobertA parameters are backpropagated.

In the Clutrr example, the output of the neural network contains probabilities for all
possible pairs of characters described in the text and all possible relations in the domain.
For n unique characters and m relations, 2" - m probabilities must be computed, which
has exponential complexity. However, in the Clutrr example, the text snippets contain
few different characters. Furthermore, even if the same character name is used in several
text samples with different queries, they are not considered to be the same entity and are
assumed to be independent. Consequently, the Clutrr example is not representative for
the application of Scallop to large graphs and avoids the scalability problem resulting from
the combinatorial explosion in the SDD evaluation.

4.2.2. Logic Tensor Networks

Logic Tensor Networks (LTN) [14, 57] is a neuro-symbolic framework that learns neural
network parameters by expressing knowledge as constraints in first-order logic and
optimising their joint satisfaction.

51

4. Neuro-Symbolic Reasoning

) 8
= S
5 &

Figure 4.4.: Illustration of the tensor computation graph of the MNIST addition example
in LTN. The figure is taken from [14].

LTN is based on Real Logic [14]. A theory in real logic is denoted as 7 = (K, I (- | 0)). It
consists of first-order logic formulae K in a logical language £ with finite sets of variables
X, constants C, functions F and predicates . The knowledge applies to a domain D.
Further, 7 (- | 0) is a parametric interpretation' of all the symbols and operators in the
logical language in the real-valued domain.

Definition 4.2.1 (Interpretation). An interpretation I of a first-order logical language L
is a function from the signature of L to the real numbers that satisfies the following conditions:

1. I (c) € R” for every constant symbol c € C;
2. I(f) e R"™ — R" for every function f € F with arity m;

3. I(P) e R"™ — [0,1] for every predicate P € P with arity m.

Thus, constants are mapped to vectors in R", m-ary functions are mapped to m-ary
real functions, and m-ary predicates are mapped to fuzzy subsets of [0,1] ¢ R. Com-
plex formulae are built from these components with a set of connectives and quantifiers
{A,V, =, >, &, V, 3}. They are interpreted with fuzzy logic operators, see Section 1.2.3.

Example 4.2.3 (Logic Tensor Networks). The MNIST addition example from Sec-
tion 4.2.1 is modelled in LTN as follows [14]. The tensor computations are illustrated in
Figure 4.4. The predicate digit(x,d) denotes the truth value for a digit in an image, and
the digit addition is formulated as

V(x,y,n) : (Idy,d; : di +dy = n, (digit (x,d;) A digit (y,dz))),

In [14] this mapping is called grounding but does not correspond to the term grounding in logic as
described in Section 1.2.2. Interpretation is used to distinguish the terms.

52

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

where x, y are variables for the first and the second image, d; and d, are the digits in the
images and n is the sum of the digits. The language is interpreted in real logic:

- T (images) = [0, 1]**¥! MNIST images that have 28 x 28 pixels and a greyscale value.
- I (results) = N

- I (digits) = {0, 1,...,9}

T (x) € [0, 1]™22XL T (1) e [0, 1]™2BXL T () € N™

-1 (dy) =71 (d2) =(0,1,...,9)

- T (digit | 0) : x,d — onehot(d) " - softmax (CNNg(x))

CNNg is a convolutional neural network [122] with 10 output neurons. The operator
onehot(d) converts the label d into a one-hot encoded vector.

Given this interpretation 7, all components of the theory can be represented in the real-
valued domain. A maximum satisfiability problem can be formulated with the grounded
rules and predicates. Hence, learning in LTN is defined as the process of finding the param-
eter values 6" that maximize the satisfiability of the theory 7~ w.r.t. a given aggregator

0" = argmaxSatAggTy(¢). (4.5)
6cO peK

Here, O is the parameter search space and ¢ € K is a formula. In this example, the
parameters of the CNN classifying the digits in the images are learned by optimising the
satisfiability loss function. Although there is no direct supervision of the digit classification,
the satisfaction of the addition constraint is part of the constraint satisfaction optimisation
problem. In some cases, a regularisation term is applied to the parameter set to keep the
learned parameters small.

At inference, the learned parameters for the predicates are kept constant. Given any input
query, they can serve as functions that return truth values. Further, the confidence of
complex formulae is evaluated by grounding them to the constants in the domain and
using the semantics of real logic.

4.2.2.1. Application to Graph Data: Learning Embeddings with LTN

LTN was proposed as a framework for learning embeddings in graphs [14]. The entities of
a domain are initialised with random vectors, which are trainable parameters. The set of
formulae K over a domain is expressed in real logic and encoded as a loss function, see
Equation 4.5. By optimising the loss functions, the vector embeddings are refined, as well
as the parameters for the predicates. During inference, the learned embedding vectors
and functions can be queried. Also, formulae can be queried and truth values returned
for them during inference. In [14], embedding learning with LTN is illustrated using the
Smoker-Friends-Cancer Example [172].

53

4. Neuro-Symbolic Reasoning

1.0 5 1.0
08‘/’_ 0] 0.8
: =
0.6 i © 0.6
% 6 : i 6
0.4 : S 0.4
pa=1 ip3=6 =)
0.2 : —— train 0.2 o2
0.0 : : : . 0.0 . , ; :
0 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch

Figure 4.5.: The satisfiability levels during the training of LTN on the left and the truth
values of the formulae ¢; and ¢, during training on the right. The figure is
taken from [14].

Embeddings Smokes
2 at 29 e
0.8
11 | K i 11 ° L
¢ ® e 0.6
0{ M 04
L & .. 0.4
~14 e Groupl —1-
é Group 2 J 0.2
B T % 1 0 1 3
Friendships per group Cancer
2 2 °
[]
1 1 o ° o 0.8
° 0.6
0 04e
° ° 0.4
-1 -1 0.2
2 0 1 2 2 -1 o 1 2

Figure 4.6.: The results of the experiments on embedding learning with LTN. The truth
values for the predicates Smoker and Cancer are plotted on the right. The
learned embeddings for the entities in the groups &; and &; and their friendship
relations are plotted on the right. The figure is taken from [14].

Example 4.2.4 (Embedding learning with Logic Tensor Networks). The Smoker-
Friends-Cancer Example contains 14 entities that are separated into two groups &; =
{a,b,...,h} and &E; = {i, j,...,n}. The following entities are smokers: S = {a, e, f, g, j, n}.
All other entities are non-smokers. Friendship relations between people are also given:
F ={(, b), (a, e), (a, f), (a, g), (b, ¢), (c, d), (e,), (g, h), (i, j) (j, m), (k, 1), (m, n)}. They are
non-reflexive and symmetric. For the entities in & it is known whether they suffer from
cancer or not: C = {a, b}. For the entities in &, it is unknown whether they have cancer
or not. Furthermore, general axioms can be formulated about the domain. The general
axioms are: (1) smoking habits are shared among friends, and (2) smoking causes cancer.
This results in a set of axioms.

« F(u,v) for(u,v) € F

e =F(u,0) for (u,v) ¢ Fu>0v
e« S(u) foruces$S

54

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

e =S(u) forue (EUEy)\S

e C(u) foruecC

e =C(u) forue &\C

o Vx=F(x,x)

« Vx,y(F(x,y) — F(y,x))

o Vx3yF(x,y)

+ Vx,y((F(x,y) A S(x)) = S())
¢ Vx(S(x) — C(x))

e Vx(=C(x) — =S(x))

Note that from a logical point of view, the formulae are not simultaneously satisfiable.
There are people who smoke and do not get cancer, or non-smokers in a group of friends
who smoke. Therefore, the formulation in fuzzy logic is crucial to express the degree of
truth.

In the real-valued space, the formulae are interpreted as follows. The embeddings are
intialized with random vectors {vy(a), ..., vg(n)} of dimension R®>. Multilayer perceptrons
(MLP) represent the predicates S, F, C in real logic.

« T (people) = R°. The model is expected to learn embeddings in R>.

e« I(a|0)=vy(a),...,I(n|0)=vy(n). Everyindividual is associated with a randomly
initialized vector of 5 real numbers.

« I(x|0)=1(y|0) ={ve(a),....vo(n)}

« 7(S]0): x> sigmoid(MLPgg(x)), where MLPg g has 1 output neuron.

« I(F|0):x,y+> sigmoid (MLPrg(x,y)), where MLPrg has 1 output neuron.

« 7(C|0): x> sigmoid(MLPcg(x), Where MLPcg has 1 output neuron.

Together they form a SatAgg loss function, see Equation 4.5.

The learned embeddings are plotted in Figure 4.6[14]. It can be seen that the formula
smoking implies cancer is inferred for entities in &; and changed for entities f and g, as
they are inconsistent with the rule set. After learning, the models MLPg, MLPc and MLPF can
be queried. For example, MLP¢ is queried to predict the predicate Cancer for the entities in
&;. The truth values of formulae can also be queried. Figure 4.5 shows that satisfiability of
the axioms and of the following formulae increases and converges during training

$1: Vp:S(p) — C(p) (4.6)
$2: ¥p,q: (S(p) VS(q) — F(p,q) '

4.2.3. Knowledge Enhanced Neural Networks

Knowledge Enhanced Neural Networks (KENN) [48] integrate prior knowledge in the form
of logical formulae into a neural network by adding knowledge enhancement layers to the
network architecture. The purpose of these layers is to refine predictions in order to align
them with the prior knowledge.

55

4. Neuro-Symbolic Reasoning

Figure 4.7.: The architecture of knowledge enhanced neural networks. A base neural net-
work (NN) makes intial predictions that are updated by one or more knowledge
enhancement layers (KE). The figure is taken from [48].

The architecture of KENN is illustrated in Figure 4.7. It essentially consists of two modules
that are end-to-end differentiable. First, a base neural network implements a function that
produces predictions Y € R™ for ¢ classes given some input data X € R™? with feature
dimension d. Second, one or more knowledge enhancement layers are stacked on top of the
base neural network that are associated with a finite set of prior knowledge formulae %K.
These knowledge enhancement layers aim to refine the predictions with respect to the

knowledge in K.

KENN expects formulae ¢ € K to be clauses which are disjunctions of k literals. They are
based on a first-order logical language consisting of constants C and predicates . As the
clauses in K formulate general knowledge they contain no constants and be universally
quantified. Each knowledge enhancement layer implements a function that updates the
predictions of the base neural networks’s last layer. It therefore uses a t-conorm boost
function 4 : R¥ — Rk that increase the satisfaction of a formula ¢ measured in fuzzy
logic, see Section 1.2.3. The softmax function is used as differentiable approximator of the
maximum function, which represents disjunction in Godel logic, see Section 1.2.3. The

suggested refinements A?j to increase the satisfaction of a clause ¢ are calculated as
eZii

T 7,
=1 ¢

A?j =67 (Z)ij = wy - softmax(Z); = wy - (4.7)

The refinements A? € R"™ are computed on the matrix of preactivations Z before applying
the activation function o. This is done to ensure that the final predictions lie in [0, 1]. The
t-conorm boost function 8% in Equation 4.7 is applied to each cell Z; ; and operates on the
values j € {1,...,q} contained in a row. A row has q prediction classes that correspond to
the number of unary predicates in the logical language. The parameter wg denotes a clause
weight that is associated with each clause in ¢ € K. The clause weights are optimized
during training and can be interpreted as the importance of a clause for improving the
final predictions. The refinements A? from each clause ¢ € K are aggregated and added to
the preactivations of the base neural network to produce the final predictions Y’ € R™:

Y=o Z+ZA¢ : (4.8)

56

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

In the learning process, the loss function is based on the given labels and the updated
predictions Y’ instead of the predictions of the base neural network Y. This way, the clause
weights are part of the optimization.

Example 4.2.5 (Knowledge Enhanced Neural Networks). Recall the Smoker-Friends-
Cancer Example in Section 4.2.4. Here, it is adapted to formulate a multi-label classification
task where the classes are not mutually exclusive but have dependencies. Constants
denote people annotated with a feature vector x € R?. They are categorised whether
they are smokers S(x) and whether they have cancer C(x). The following clause ¢y :
V(x) : =S(x) V C(x) describes a dependency between the predicates S and C. The base
neural network returns truth values Y with their preactivations Z, e.g. Z,c] = 0.5,
Z[,s) = 0.3 for a constant a. These are fed into the t-conorm boost function for clause ¢, to
determine A% with wg, = 0.5. The grounded literal ~S(a) is negated, so its preactivation
is multiplied by —1. This leads to the following refinements:

0.5 60'3

(4.9)

205403 205103

0.5]\"
A =051 —1]®soﬂmax([0:3]) :0.5-[-

Then, the updated preactivations with the refinements are calculated as

Z,[a,C] ~ 0.75
Z/[a,S] ~ 0.06.

It can be seen that the knowledge enhancement layer acts on the preactivations by increas-
ing the vallue for the atom C(a) and decreasing the value for S(a).

4.2.3.1. Application to Graph Data

In the architecture of KENN presented above, the knowledge enhancement layer operates
on a matrix of preactivations that serves as grounding for unary predicates. Binary
predicates must be taken into account in order to handle graph data. The principles of
the knowledge enhancement through a t-conorm boost function remain unchanged. In
[46] changes to the data structure are proposed to take binary predicates into account.
The set of clauses is divided into unary and binary clauses: K = Ky U Kp. Unary and
binary predicates are denoted as Py € Py and P € Pp Binary clauses contain two different
variable, for example ¢;(x,y) : Vxy : =S(x) V =F(x,y) V S(y) with the binary predicate
Friends F(x, y).

For unary predicates, the rows in the preactivation matrix Z correspond to the constants
and the columns to the unary predicates. Thus, each possible grounded atom corresponds
to a cell in the matrix. The key challenge with binary predicates is that the grounding of a
binary predicate refers to two constants instead of one. Therefore, binary groundings are
expressed as a matrix Zg € R™I”5|. Each row has a pair of keys (s, s,) and each cell in
the matrix corresponds to the grounding of a binary predicate. It has binary keys (s, s;)
per row and a value as grounding for a binary predicate Pg(x, y).

57

4. Neuro-Symbolic Reasoning

To bring unary and binary predicates into a representation to which the t-conorm boost
function can be applied, unary predicates are binarised. A unary predicate Py is formalized
as two binary predicates Py (x,y) and Pg (x,y), where only the first (second) entry matters.
For example, ¢! (x,y) is binarised to Yxy : =S*(x,y) V =F(x,y) V $Y(x,y). Then, unary
and binary predicates are combined into a matrix on which the clause enhancers for binary
clauses can operate. Therefore, the keys of the unary matrix are joined on the keys of the
matrix with the binary predicates (sy, s,). It can happen that two groundings of a binary
clause share a common grounded term. For example, ¢'(a,b) = ~S(a) V —F(a,b) vV S(b)
and ¢! (b,c) = =S(b) V =F(b,c) V S(c) share the grounded atom S(b). In this case, the
refinements provided by both groundings are aggregated and added up for identical keys,
corresponding to the following group-by operation for a repeated grounded unary predicate

PU(a):

_ ¢ ¢
Do = D D s Maponan * 2, 6 Mlpayoscea | (4.10)
b#a | peKp $eKp
PXe¢ PYeg
The notation A? indicates that the row for the constant pair [a, b] and the column

[a,b],P*(a,-)
for the binarized unary predicate P* (g, -) from A? are selected. Refinements from predicates
that do not appear in clause are set to zero. Finally, to obtain the updated predictions
Y’, the refinements from unary clauses Agq, p(4), and from binary clauses Agg, p(q) for a
grounded predicate P(a) are added to the preactivations Zp(,) and are activated with o:

;o ¢ ¢
Y'pwa)=0|Zpa) + Z AP(a) + Z AP(a) . (4.11)
¢€7(U 4567(3

Example 4.2.6 (Knowledge Enhanced Neural Networks with Binary Predicates).
With these changes, the binary predicate Friends is introduced to the Smoker-Friends-
Cancer Example above [46]. The example is illustrated in Figure 4.8. The domain consists of
three constants (people) C = {a, b, ¢} and the unary predicates Py = {S, C} and the binary
predicate Pp = {F}. The constants are described as a graph, as shown below, where the
edge weights represent the groundings for the binary predicates and the initial predictions
represent the groundings for the unary predicates. In Figure 4.9, the unary groundings
Zy and binary groundings Zp are denoted as matrices. The join operation represents
the binarization of the predicates S(x) and C(x) to $*(x, y), SY(x,y) and C*(x,y), C¥(x, y)
so that they are represented in a matrix with the binary groundings. The knowledge
enhancer for binary clauses is applied to the joined matrix shown in Figure 4.9. The
group-by operation collects the refinements that refer to common grounded atoms. In case
the set of unary clauses is not empty, refinements computed from unary clauses would be
added, as described in Equation 4.11.

58

4.2. Prominent Neuro-symbolic Frameworks in the Context of Graph Data

S(b) = -3 Unar d Bi
y and Binary
Erapk cb) =1 Groundings
[]
Flab) =2 ﬁl i Sk C
o [0 =3
3 1
z 2 -1
F(b,c) =-1
(sx» Sy) F(x, y)
©.1) —2
(0,2) 1
Flaye) =1 | (1,0) _31
(1,2)
(2,0) 0
S(c) =2
Cle) = -1 &0 5

Figure 4.8.: Illustration of KENN on the Smoker-Friends-Cancer example. Left: The graph
of three people a, b, ¢ with preactivation values for Smoker (S) and Cancer (C)
as well as Friendship (F). Right: The interpretation of the graph as grounded
unary and binary predicates.

(sx’ Sy) F(X,Y)

i S CW) ©y _12
10 -3 301N ©02)

SELECT s%,sY,Z*,ZY,B (1,0) 3
13 1 FROMZAS Z,, ZASZy, B [T (1 | -1
2\2 -1 WHERE Z.i = B.s* AND Z,,.i = B.sY (2:0) 0
J (2,1) 5

§< ¢ s s F

oy {0 =3 3 1 =2

0210 -3 2 -1 1

) w3 1 0 -3 3

13 1 2 -1 -1

20 2 =1 0 =2 0

en\2 -1 3 1 5

ZX

Figure 4.9.: Illustration of the binarization of the unary predicates S and C to $*, S¥ and
C*, CY and their join with F on the keys (sy, s;).

59

4. Neuro-Symbolic Reasoning

4.2.4. Conclusion

The previous section introduced three approaches in the field of neuro-symbolic integra-
tion.

Regarding graphs, all of them offer the possibility to encode binary predicates and thus
to model relations in their logical language. It is shown that LTN is theoretically suit-
able for learning embeddings for entities in graphs. Scallop was tested in applications
involving reasoning with binary predicates. Scallop was used in the context of a reasoning
task on kinship relations. KENN was used to refine predictions for unary predicates by
incorporating information from binary clauses.

However, open questions remain when applying these methods to graphs. The first open
question is how to consider the open-world assumption on graphs when some information
is not explicit and negation has to be taken into account. Related to this, the second major
concern is scalability on large graphs with a high number of entities and relations.

For LTN, the grounding process can be expensive for a large number of entities and facts.
Also, a large number of axioms leads to a complex loss function. LTN also requires to
ground negated statements, that are usually not explicitly encoded in knowledge graphs.
For Neural Probabilistic Programming, the inference process relies on the closed world
assumption. The resolution of the logic program at inference can also become challenging
when many grounded terms have to be considered, including negated terms. Furthermore,
to obtain the probabilistic facts from the neural predicates, an exponentially growing
number of entity pairs must be evaluated, which is infeasible for large graphs. In KENN, the
matrix with groundings grows quadratically (n?) with the number of possible combinations
of n nodes in the graph. Since the representation is dense, a truth value is needed for each
pair of nodes that are not connected.

In conclusion, the use cases presented are based on small, limited problems, resulting in
dense graphs that are fully connected or even toy examples with a small number of entities
and relations. They do not resemble real-world graphs such as knowledge graphs. For this
reason, the application of the presented neuro-symbolic methods to them still needs to be

addressed.

4.3. Neuro-Symbolic Reasoning on Graphs

Since the methods of the previous section have some major drawbacks when applied to
large graphs, this section presents neuro-symbolic methods that are developed specifically
for knowledge graphs. These methods are organised into the following categories: (1)
rule learning, (2) knowledge-driven graph augmentation, (3) knowledge as constraints on
the embedding space, and (4) knowledge as regularization terms in the loss function. For a
broader overview, the following surveys are recommended [52, 222].

60

4.3. Neuro-Symbolic Reasoning on Graphs

4.3.1. Rule Learning

For the sake of completeness, the first category concerns rule learning approaches. Methods
in this category leverage neuro-symbolic techniques to extract rules from data. The
majority of these methods train a neural component to obtain rule confidence scores or
guide the rule mining strategy. Some exemplary methods in this category are ExpressGNN
[94], pLogicNet [167], pGat [85], ItEr [89], RNNLogic [168], Drum [176] or Neuro-Symbolic
Class Expression Learning [53]. As the focus of this thesis lies on the integration of prior
knowledge and not on the extraction of knowledge in form of rules, methods of this
category are not presented in detail.

4.3.2. Knowledge-driven Graph Augmentation

Models in the category knowledge-driven graph augmentation use reasoning iteratively
in the training process. The purpose of the symbolic module is to augment the graph
with additional facts on which the sub-symbolic module is trained. The symbolic and
sub-symbolic components are applied sequentially or can interact with each other. Typi-
cally, the sub-symbolic methods used here are knowledge graph embedding methods, as
mentioned in Section 3.1, combined with a symbolic reasoning module.

In KGE*[106] a reasoner and a knowledge graph embedding model inform each other by
iteratively feeding the output of one component as input to the other. The reasoner is based
on a set of Horn rules that encode user-specific or ontological domain knowledge. Starting
from the rules and the explicit facts, the reasoner applies forward chaining until a fixpoint
is reached, in order to augment the explicit facts with inferred facts. The score function of
a knowledge graph embedding method is used to evaluate the plausibility of the explicit
and inferred facts. The most plausible facts are fed back to the reasoner and the process
is repeated iteratively. To reduce the number of facts to be evaluated by the knowledge
graph embedding, KGE* only scores the most relevant facts. To determine the relevance
of facts, densely connected areas in the graph are taken into account using clustering
techniques. In the experiments with KGE* [106] the knowledge graph embeddings TransE
[26], HolE [156], ComplEx [194], RotatE [188] and DistMult [214] and the reasoner Pellet
[186] are used. However, KGE* is described as a model agnostic framework that does not
depend on a specific knowledge graph embedding method or reasoner. In terms of prior
knowledge, KGE* is restricted to monotonic rules to ensure that the inferred facts never
contradict the existing facts. It focuses only on the generation of positive facts. It also
expects a set of predefined hard rules.

Similar to KGE*, UniKer integrates a knowledge graph embedding method with a reasoner
in an iterative manner to infer implicit facts. The number of inferred facts depends on
the number of explicit facts. Motivated by this, knowledge graph embeddings are used
to find more plausible facts to be given to the reasoner and to increase the coverage of
the rules. While KGE* only increases the number of facts, UniKer extends the method by
also removing the least A% plausible facts with the lowest scores. This allows UniKer to be
robust to noise in the form of incorrectly introduced facts and to avoid the propagation

61

4. Neuro-Symbolic Reasoning

of contradictions by the reasoner. Since the number of facts to be potentially evaluated
is large, UniKer uses lazy inference. Only the facts are scored that occur in the body of
rules and are potentially useful to the reasoner. In addition to KGE*, UniKER focuses on
monotonic Horn rules. UniKer does not rely on the availability of prior knowledge, as it
uses automatically generated rules from AMIE+ [66]. UniKer is agnostic to the knowledge
graph embedding method. However, in the experiments [36] TransE, DistMult and RotatE
are used.

While the above methods focus on the set of positive facts, ReasonKGE [102] uses prior
knowledge to generate a set of negative facts in a more reliable way. It iteratively identifies
inconsistent predictions by a knowledge graph embedding model through consistency
checking. As noted in Section 3.1.3, negative facts are usually sampled randomly under
the local closed-world assumption. This does not prevent the introduction of potentially
false negative facts. ReasonKGE iteratively generates a set of negative facts based on the
ontology, the explicit facts and a knowledge graph embedding model. The method starts
with standard training of a knowledge graph embedding model based on random negative
sampling [26]. Then a consistency check based on DLITE [11], a lightweight extension
of description logics is performed to identify inconsistent predictions. Once inconsistent
predictions are found, facts that have a similar neighbourhood to the inconsistent fact are
sampled, resulting in a set of negative facts. This procedure is called dynamic sampling.
The set of negative facts is then fed back into the next training iteration of the knowledge

graph embedding model.

4.3.3. Knowledge as Constraints on the Embedding Space

Another way of introducing knowledge is in the form of constraints on the embedding
space. In fact, the inference patterns covered by knowledge graph embeddings can already
be seen as such constraints. For example, in DistMult all relations are modelled as symmet-
ric relations, which already represents the encoding of prior knowledge in the embedding
space. However, it is not obvious how to introduce general and complex knowledge into
the embedding space. In addition, this strong bias towards a particular inference pattern
may sometimes not be desirable.

The translational embedding method BoxE, see Section 3.1, goes further in this direction
and allows the explicit injection of inference patterns as prior knowledge. This method
is in the following referred to as BoxE with rule injection (BoxE + RI). A rule < B is
injected if the model is configured to force 7 to hold whenever the expression in the body
B holds [3]. To achieve this, a strong bias is introduced into the embedding model by
manually adjusting the boxes of some relations according to the injected rules. This bias
ensures that the rule is enforced even during inference. To inject symmetry and inversion

!
rules for relations r; and r», their boxes are constrained to r¥ = r® for symmetry, or
!
gz) and rgl) = rgz) for inversion. It is shown in [3] that hierarchy and intersection
rules can also be enforced. However, the injection of negated and composed rules is not

supported.

I'gl) ; iy

62

4.3. Neuro-Symbolic Reasoning on Graphs

4.3.4. Knowledge as Regularization Terms in the Loss Function

Methods in this category introduce knowledge through the loss function. The strategy is to
penalize solutions that are inconsistent with the knowledge and thus provides incentives
to find knowledge compliant representations during optimization.

O Entity embeddings

O Relation embeddings
@ Truth values in [0, 1]
@ Logical connectives

1ce)

Figure 4.10.: Visualisation of KALE. The facts are interpreted as grounded atoms and
normalized scores as their truth value. Logical operators are represented in
fuzzy logic. The figure is taken from [77].

TransOWL [42] builds on TransE and encodes knowledge as terms in the loss function.
The knowledge comes from an RDFS schema and typically includes class information,
relational equivalence, inversion and hierarchy. The penalty terms take into account
how TransE models facts in the embedding space, where the representation of the tail
entity corresponds to the representation of the head entity plus the relation vector. In
line with this, the term A Zr1=rz€7;quiv ||[ry — r2]| is added to the score function of TransE,
where the relations r; and r, that are known to be equal (r; = r;), For inverse relations,
-A Z,F,g 7, |lr1+712]| is added to the score function. The parameter A controls the impact
of the penalty term. This way, relations are penalized that do not correspond to the rule in
the embedding space and increase the overall loss. The goal is to push the representations
towards vectors that satisfy the rules in the vector space. TransOWL also criticises uniform
negative sampling, see section 3.1.3, and highlights the risk of generating false negatives.
To mitigate this issue, TransOWL uses a reasoner [103] to introduce negative facts based
on the knowledge provided. With this feature, TransOWL carries elements of the methods
in the category knowledge-driven graph augmentation in Section 4.3.2.

Joint Embedding of Instances and Ontological Concepts (FOIE) [82] considers knowledge
graphs from both an instance view and an ontological view. While the instance view
considers the facts in a knowledge graph, the ontological view considers general knowledge
for the relations and entities in the fact set. Facts and general knowledge are embedded in
separate vector spaces called intra-view models. The knowledge graph embedding models
TransE, HolE [156] and DistMult are used as intra-view models in JOIE. In addition, a
cross-view model for(-) bridges the embeddings of both spaces, thereby linking instance
embeddings with concept embeddings. In the cross-view model, the representation of
an entity is trained to be close to the representation of the concept type, see Figure 4.11.

63

4. Neuro-Symbolic Reasoning

Special attention is drawn to modeling hierarchies for the property subclass_of in the
ontological view embeddings. Therefore, an additional loss term is introduced that models
pairs of hierarchical concepts with a non-linear transformation between class and subclass
concepts. The loss function of JOIE is composed of the losses of the intra-view models

Entity Embedding Space Concept Embedding Space
b -7 T T TS
“Person” .° N fer () “Percon
Entities ,” Pablo Alboran N é’ersont Barackl]Obama
: / oncep!
1 \
! \ (@ @)Pablo Albotan
'\ @@® Michelle Obamé 4 y~ Person™_
\Donald Trump) Michelle Obama
N ’ Donald Trump
o Barack Obama~ e
7 - o N — .
S @e® fer() eijing
! Honolulu \ Honolulu\“
\ g@) Los Angeles, City” <7 City™, “City”
\ Beijing “City
AN / . NYC Los Angeles Concept
S NYC .~ [Entites
0 > >

Figure 4.11.: Visualisation of JOIE. The embeddings in the intra-view space, namely entity
embedding space and concept embedding space, are translated with a cross-
view transformation function for. The figure is taken from [82].

(including the hierarchy term) and the loss of the cross-view model.

KALE (Embeddings by jointly modeling Knowledge And Logic) [77] introduces prior knowl-
edge to knowledge graph embeddings by jointly embedding the grounded formulae and
facts of a knowledge graph in the same latent space. KALE is visualised in Figure 4.10. In
contrast to the previous mentioned approaches TransOWL and JOIE that focus on simple
RDEFS schema rules, KALE supports first-order logic rules. The facts in the knowledge
graph are interpreted as grounded atomic formulae in first-order logic. KALE employs
TransE [26] to compute scores for these grounded atomic formulae. The entities are
constrained so that the truth values returned by TransE fall into [0, 1] C R to mimic truth
values. To represent complex formulae in the same space, KALE encodes logical operators
in fuzzy logic. In this way, truth values of grounded complex formulae can be composed
of atomic formulae. The larger a truth value, the better a grounded rule is satisfied. In the
following, a global loss over the satisfaction of the grounded formulae in fuzzy logics and
the atomic formulae as facts in the graph can be defined. KALE relies on a margin-based
ranking loss. Uniform random sampling is not only conducted to obtain negative facts,
but also to obtain negative grounded rules [26].

RUle-Guided Embedding (RUGE) [78] learns knowledge graph embeddings iteratively
through the guidance from soft rules. It takes as input the sets of explicit facts, implicit
facts, and soft rules with confidence scores. The soft rules and their confidence scores are
learned with AMIE [65]. Per iteration, RUGE alternates between a soft label prediction
stage and a embedding rectification stage. The goal of the soft label prediction stage is to
find scores for the implicit facts. ComplEx is used as the knowledge graph embedding

64

4.4. Summary and Perspective

Name r |s k |i knowledge
DeepProblog [139] | v/ | X v | v | FOL formulae
General Scallop [95] X | VY FOL formulae
Frameworks LTN [14] vV | (V)| v | (V) | FOL formulae
KENN [48] vV | v) | v | (V)| FOL clauses
Knowledge-driven KGE* [106] X | (X) | v | (X) | Horn rules
graph UniKer [36] vV | X) | v | (X) | Hornrules
augmentation ReasonKGE [102] vV | (X) | v | (X) | Horn rules
Knowledge as Eljzf;c;;y
constraints on BoxE+RI [3] v |/ v | (V)
the embedding space Symmetr.y
Intersection
Symmetry
Knowledge as TransOWL [42] v |/ | X Equivalence
Regularization Inversion
on the Loss Hierarchy
function JOIE [82] | VX Types
KALE [77] V)| VX FOL formulae
RUGE [78] I)|V | X Horn rules

Table 4.2.: Overview of the neuro-symbolic methods presented in this thesis with respect
to the desiderata of neuro-symbolic Al: robust, scalable, accurate, knowledge-
aware, interpretable.

model. They should match the scores produced by ComplEx and at the same time match
the rules as much as possible. Given rules with confidence and embeddings from the
previous iteration, the goal is to predict a soft label for the implicit fact using the current
embeddings and groundings of the rules. The grounded rules are used as constraints on
the soft labels. The conditional truth values of the grounded rules given the soft labels are
recursively computed using product fuzzy logic. The confidence scores are used to set the
tolerance for a rule violation. For the purpose of scalability, RUGE only grounds facts that
occur in the body of a rule, as described for UniKer. In the embedding rectification stage,
the labelled and unlabelled facts (with their known labels and soft labels from the previous
step) are used to update the embeddings. A global loss over explicit and implicit facts is
minimized. The goal is to align the final embeddings on the one hand with the known
labels but also with the knowledge coming from the rules injected into the soft labels.

4.4, Summary and Perspective

With regard to the presented methods, an important question is whether the combination of
symbolic and sub-symbolic methods is successful in bringing the best components of both
fields. It is now discussed qualitatively whether the proposed methods meet the desiderata
robust, scalable, interpretable, knowledge-based and accurate defined in Section 4.1. A
summary is presented in Table 4.2. A fair assessment of the accurate criterion would
require a quantitative analysis, which is beyond the scope of this section. Therefore, this
criterion will not be discussed.

65

4. Neuro-Symbolic Reasoning

Knowledge-aware. All of the methods presented enable the incorporation of prior
knowledge. However, the expressiveness of the knowledge to be encoded as rules in the
model differs significantly. The general frameworks DeepProblog, Scallop and LTN accept
expressive first-order logical rules including quantifiers and aggregators, while KENN
is limited to universally quantified clauses in first-order logic. DeepProblog is based on
Prolog which only uses Horn clauses.

The knowledge used in knowledge-driven graph augmentation approaches is monotonic
Horn rules, which allow additional facts to be inferred and augment the initial graph.

Methods that fall into the category of knowledge as constraints on the embedding space
or in the loss function are mostly limited to simple inference patterns typically found
in RDFS schemas. They refer to patterns that should hold for certain relations, such as
symmetry, hierarchy, inversion and relational equivalence. However, KALE uses fuzzy
logic to contribute to the satisfaction of first-order logic rules in the loss function. RUGE
uses possibly soft Horn rules with confidence values at the soft label prediction stage.

Robust. In terms of robustness, the methods differ in the way they can handle errors
and noise in the input data. The general frameworks KENN and LTN are rather robust to
noise in the input data, since the logic formulae are fully translated to differentiable neural
network components in the training phase. In particular, KENN uses trainable clause
weights for each rule, which can learn to ignore apparently incorrect rules. In neural
probabilistic programming approaches, the neural predicates are also noise-tolerant to the
input data.

Knowledge-driven graph augmentation approaches rely on a symbolic reasoner, which
is not noise tolerant by default and carries the risk of propagating errors in the program
leading to false inferences. Furthermore, non-monotonic Horn rules do not allow for
contradictions with the previously obtained set of facts, which does not allow for error
correction. KGE” relies on a simple reasoner and is therefore not robust to noise, since the
reasoner could amplify the noise by propagating wrong facts. In contrast, UniKer not only
infers new facts, but also removes the least plausible facts. In this way, inconsistent facts
can be removed. In ReasonKGE, facts must pass a consistency check. Facts that are likely
to be false are included as negative facts. This makes ReasonKGE robust to noise.

The methods from the categories knowledge as constraints on the embedding space
embedding and knowledge as regularization term in the loss function essentially represent
knowledge in the embedding space and are therefore robust to noise.

However, robustness to noise means that the performance of a model remains stable or is
only slightly affected in the presence of noisy input data. The amount and type of noise
that a model can tolerate needs to be investigated experimentally. Even sub-symbolic
models that rely on a training stage can be affected by dominant noise in the data.

66

4.4. Summary and Perspective

Interpretable. Another desirable feature of neuro-symbolic methods is interpretability.
Among the methods presented, neural probabilistic programming approaches are the only
category that use reasoning with a logic program at inference. Therefore, the reasoning
process remains interpretable and the symbolic knowledge is not lost in the translation to
the embedding space. However, KENN and LTN integrate rules into the model and the loss
function during training. Particularly in LTN, it is difficult judge the effect and interaction
of the logic components after inference. The same disadvantage is present in KALE and
RUGE. In KENN, the clause weights can still give some insight into the importance of
rules, but there is no guarantee that they will hold in the predictions at inference.

For the knowledge-driven graph augmentation approaches, the rules affect the training
phase and are not included at inference. Furthermore, the impact of a rule is hard to
be quantified. For example, if the body of a rule is never true, zero additional facts
will be generated by that rule. In this case, the rule has no effect. For this reason, the
interpretability of methods in this category is limited. In BoxE+RI, the boxes for some
relations that follow rules are set manually. This introduces a strong bias that provides
predictable inference and interpretable decisions with respect to the affected relations.
However, the decisions about other relations may not be interpretable, and the rule
language of the injected rules is limited to simple inference patterns.

TransOWL basically introduces knowledge as constraints in the loss term during training.
The parameter A controls the influence of knowledge. However, this does not lead to reliable
predictive inference or more interpretable representations than in TransE. Similarly, the
pure vector representations learned in TransOWL and JOIE are not easier to interpret than
pure sub-symbolic knowledge graph embedding vectors, especially when the embedding
dimension is high.

Scalable. DeepProblog has to solve a reasoning problem in both training and inference,
which is computationally expensive when many possible worlds have to be considered.
Scallop tackles this problem by proposing approximated proof evaluation with the top-k
algorithm. However, the costly reasoning process in training and evaluation remains.

UniKer, ReasonKGE and KGE* use a reasoner during training. While these components
are costly at training, the methods rely on the trained embeddings and scale well at
inference.

TransOWL and BoxE+RI, which used embedding and loss function constraints, scale well
during training and inference. RUGE, KALE and LTN need to ground universally quantified
rules during training, which can be expensive, but this step is not necessary at inference.
The time complexity of KENN depends on the rules and predicates considered. Since the
clauses are assumed to be independent, their enhancement calculation can be parallelized,
leading to a logarithmic time complexity depending on the number of entities and clauses
[46].

67

Part lil.

Contribution

69

Outline of Contribution

Section 6 Section 8
[Section 5 KeGNN: Section 7 I;\ul.eI.(GE: ;
Reproducibility Knowledge KeGNN on lgie_lngfc,[?
of KENN [46] Enhancement of Large Graphs ink prediction
Graph Neural L on knowledge
Networks graphs

Figure 4.12.: Outline of the Contribution

The main contributions of this thesis are illustrated in Figure 4.12. Since the work of
Knowledge Enhanced Neural Networks for relational domains [46] is relevant to this
thesis, Chapter 5, deals with the reproducibility of the experiments and results obtained
with the method. Therefore, the experiments are reimplemented and then reproduced,
replicated and reevaluated. The aim of these steps is to ensure that the reimplementation
is reliable for further extensions. In addition, general lessons are drawn to improve the
reproducibility of machine learning methods.

In Chapter 6, the method Knowledge Enhanced Graph Neural Networks (KeGNN) is pro-
posed, which uses knowledge enhancement layers in the context of graph neural networks.
KeGNN can be seen as a variant of Knowledge Enhanced Neural Networks. In previous
work, knowledge enhancement layers are used with an MLP, which is not powerful enough
to capture the graph structure in the representations. In contrast, graph neural networks
can also capture relational information at the level of the basic neural network, thus
increasing the overall model capacity. The effectiveness of the KeGNN is investigated in
experiments on various graph data sets.

While the previous chapters focus on knowledge enhancement on small graphs, Chapter 7
deals with the applicability of knowledge enhancement layers to large graphs. A method
called Restrictive Neighbourhood Sampling (RNS) is introduced to solve the problem of
an exponentially increasing number of nodes with respect to the number of knowledge
enhancement layers. In addition, experiments with knowledge enhancement layers on
large graphs are carried out on benchmark datasets from the Open Graph Benchmark
[93].

Previous methods have mainly dealt with node classification and homogeneous graphs
under the closed-world assumption. However, most knowledge graphs are multi-relational
and often incomplete. In this context, Chapter 8 presents the neuro-symbolic method
RuleKGE that focuses on heterogeneous knowledge graphs viewed under the open-world

71

assumption. It combines a symbolic reasoner to generate positive and negative facts that
are integrated into the training of knowledge graph embeddings for link prediction. In the
experiments, the approach is evaluated with different rule sets on the Family dataset.

72

5. Reproducibility Study on Knowledge
Enhanced Neural Networks

This chapter focuses on the reproducibility of Knowledge Enhanced Neural Networks
(KENN) introduced in Section 4.2.3 and the experiments with binary clauses [46]. The
motivation behind this is to extend KENN to larger graphs. To this end, we re-implement
the system available in Tensorflow in the graph-specific library PyTorch Geometric [61].
There are various other reasons for reimplementing a system besides for an extension [192,
8]. For that purpose, we provide a progressive and general approach for extending any
machine learning method by first going through reproducing, replicating and reevaluating
its results. This approach aims at ensuring that the reimplementation is reliable. It is
tempting to skip these steps and jump directly to the extension of the method. On the
contrary, we argue that this approach allows to better understand potential problems
at the specific stage where they occur. Further, we identify the obstacles encountered
when conducting these steps and how they may be overcome. The particular case on
which we detail and demonstrate our approach allows us to derive general lessons learned.
In general, this work can contribute to improve reproducibility in the field of machine
learning.

The work in this chapter is published [208].

Werner, L., Layaida, N., Geneves, P., Euzenat, J. and Graux, D. (2024). Reproduce,
Replicate, Reevaluate. The Long but Safe Way to Extend Machine Learning Methods.
Proceedings of the AAAI Conference on Artificial Intelligence, 38(14), 15850-15858.
https://doi.org/10.1609/aaai.v38i14.29515

5.1. Reproducibility in Machine Learning

Experiment reproducibility is a cornerstone of scientific research. It is so for the experi-
menters, because it allows them to be more confident in the results they claim. It is so for
the research community, because it allows other researchers to stand on a solid ground
in developing their own work. This leads to more reliable and superior research results,
which is beneficial for the society as a whole.

In the machine learning community, strong incentives emerge to provide the necessary
information to reproduce results [164]. More generally, this is a basic open science
requirement to increase accountability and reproducibility. Reproducibility guidelines

73

5. Reproducibility Study on Knowledge Enhanced Neural Networks

Same software | Different software

Same datasets | Reproduce Replicate

Different datasets Reevaluate

Table 5.1.: Overview of the steps reproduce, replicate and reevaluate

and checklists focus on encouraging researchers to provide more detailed documentation
of their published work [99, 98, 1]. However, it is not obvious that such guidelines are
sufficient to independently reproduce experiments. Indeed, random operations (non-
determinism) may be introduced in several places [33], hyperparameters may change
the behavior of models [87, 137], components may exchange information in imprecise
ways, the data processing pipeline may be overlooked, etc. [135, 64]. All these factors can
compromise the reproducibility of experiments.

Various terminologies are considered for reproducibility in computer science [58, 72, 174,
165, 75]. We use and enrich the terminology adopted by the ACM [6], as summarized in
Table 5.1:

« ‘repeat’ means reexecuting an experiment with the same code, the same parameters,
the same data by the same experimenter;

« ‘reproduce’ means performing an experiment with the same software, the same
parameters and the same data but by a different experimenter;

« ‘replicate’ means performing an experiment independently on the same data but
using different software and by a different experimenter;

« to these, we add ‘reevaluate’ which means performing an experiment independently
on different data.

When necessary, ‘reproducibility’ is also used as a term covering all such activities.

Given the high degree of non-determinism of machine learning techniques in general, the
problem of reproducing results has gained importance with the increase of interest in the
field. Recent surveys [76] show that even papers published at prestigious conferences are
not sufficiently documented and report on a reproducibility crisis [74]. An empirical study
[169] reveals difficulties in independently replicating published papers. Due to increased
awareness, several conferences, including AAAI, promote reproducibility by encouraging
authors to provide source code, experimental descriptions and datasets of their papers
through reproducibility guidelines and checklists [164, 99, 1].

Further, there is a surge in documented reproduction and replication attempts, particu-
larly encouraged through reproducibility challenges [164, 185, 140]. Such challenges ask
interested individuals to replicate results from recent papers. Difficulties such as the lack
of detailed documentation, e.g. hyperparameters [10] or even failure to reproduce [24] are
frequently reported. Their motivation differs, as the goal in this chapter is not to achieve

74

5.2. Experiments with Knowledge Enhanced Neural Networks

reproducibility for its own sake. Here, experiments are reproduced to ensure that the
reimplemented system retains the function of the knowledge enhancement in the initial
implementation.

5.2. Experiments with Knowledge Enhanced Neural Networks

KENN [48] is a neuro-symbolic method that integrates a base neural network (NN) with
knowledge enhancement layers in an end-to-end differentiable way. While KENN was
tested on several use cases [48, 73], particular interest is drawn to experiments with binary
clauses [46]. Since the aim is to extend KENN with more graph learning capabilities, it is
necessary to ensure that the work stands on firm ground. For that purpose, the experiments
performed by the authors are reproduced in this thesis.

KENN was applied to a node classification task on the Citeseer dataset [136], which
is a homogeneous, node-attributed and labelled graph. The Citeseer dataset consists of
scientific papers belonging to one of the six computer science research classes and citations
among them. The dataset is modelled as a graph where nodes represent papers and edges
represent citations. The prior knowledge provided to the knowledge enhancement layers
encodes the assumption that two papers that cite each other have the same class. According
to the pattern

VxVy : —Class(x) V —Cite(x, y) V Class(y), (5.1)

one logical clause is defined for each class and forms a set of prior logic clauses. While the
predictions of the base neural network are used as interpretation of the unary predicates
representing the classes in the real-valued domain, the citations between two papers are
known a priori. For this reason, the predictions of the binary predicate Cite(x, y) are set
to true (1.0) if an edges exists.

In [46], the authors report the performance of KENN for experiments on multiple training
set sizes (10%, 25%, 50%, 75%, 90%). For each size, 100 independent runs are conducted.
KENN is compared to the standalone base neural network and to Neural Machines (RNM)
[142] and Semantic-Based Regularization (SBR) [56]. The experiments support the follow-
ing hypotheses:

H1 KENN consistently outperforms the base neural network for all training set sizes.

H2 The performance gain due to the knowledge enhancement is larger when training data
is limited.

H3 KENN leads to similar or superior results compared to RNM and SBR.

75

5. Reproducibility Study on Knowledge Enhanced Neural Networks

(Initial Data [Additional Data)
S
i) Initial Implementation Initial Implementation
(O]
= o
= NN KENN NN KENN o
o < < <
() Q
o —
_ _ =
— ~+
! {= 5
5 g
i Reimplementation Reimplementation =
— NN KENN NN KENN
= < <
()
o
S AN J

Figure 5.1.: Overview of the methodology

5.3. Methodology

We extend KENN in the framework PyTorch [161] in conjunction with the library PyTorch
Geometric [61]. To this end, a comprehensive reproducibility study is the best way to
ensure that KENN is extended on a reliable basis. With this objective in mind, as illustrated
in Fig. 5.1, the following steps are conducted:

1. We reproduce the results obtained with the initial implementation;
2. We reimplement the initial experiments and replicate them;

3. We reevaluate the experiments on additional datasets.

For each step, we detail the required information, the obstacles we had to overcome and
how we achieved to overcome them. Furthermore, we evaluate whether the KENN results
are confirmed and report the lessons learned.

We refer to the following publicly available material. The reproduction and replication
is based on the results reported in the paper [46] (that we call the initial paper) and
on the reported experiments! (that we call the initial experiments). The experiments
make use of the Python package KENN222. In addition, we also extract information
from other related papers [48, 47]. We preserve, as far as possible, the input (dataset)
and output format (results) of the initial experiment. In this thesis, the focus lies on the
transductive experiments with KENN. In the following, we refer to our implementation as
reimplementation.

All experiments in this thesis are conducted on a machine running an Ubuntu 20.4 equipped
with an Intel(R) Xeon(R) Silver 4114 CPU 2.20GHz processor, 192G of RAM and one GPU
Nvidia Quadro P5000. The reimplementation of the experiments is available at a dedicated

"https://github.com/rmazzier/KENN-Citeseer-Experiments
2https://github.com/DanieleAlessandro/KENN2
3https://github.com/HEmile/KENN-PyTorch

76

https://github.com/rmazzier/KENN-Citeseer-Experiments
https://github.com/DanieleAlessandro/KENN2
https://github.com/HEmile/KENN-PyTorch

5.4. Evaluation Criteria

Git repository? under the hash a894cae297b47f6d1acfa8e8dab99603f7b5e996. It contains the
following elements: (a) the source code, (b) the execution instructions, (c) the software
requirements, (d) the result evaluation script, (e) the raw files of the experiment results.
Further, the adaptions of the initial implementation to Pubmed and Cora is included.

5.4. Evaluation Criteria

In order to judge whether we have successfully reproduced, the question of evaluating
reproducibility arises. For this purpose, two reproducibility targets are defined.

As common in natural sciences, qualitative reproducibility refers to checking whether
experimental results support the hypotheses of the initial paper and come to the same con-
clusions. Coming rather from an engineering perspective, quantitative reproducibility
aims at obtaining the same or close results as the initial experiment. In Fig. 5.1, they are
respectively noted as > and =. In the context of the experiments with KENN, qualitative
reproducibility refers to checking if the confirmed hypotheses in the initial paper are still
supported by the reimplementation.

Regarding qualitative reproducibility, we focus on the hypotheses H1 and H2. The verifi-
cation of H3 would involve reproducing the results of the baselines SBR and RNM which is
beyond the scope of the work in this chapter. To test H1 and H2, we adopt the procedures
used in the initial paper. For H1, a one-sided independent Student t-test with significance
threshold 0.01 is employed to assess the superiority of the mean accuracy of KENN over
the base neural network. For H2, which establishes a relation between the training set
size and the delta of base neural network and KENN, no precise evaluation procedure is
mentioned. However, the absolute difference between the mean test accuracies for the
experiments is observed.

In terms of quantitative reproducibility, absolute equality of the results is hard to be
expected, since even reexecuting the initial implementation does not lead to absolutely
equal numbers. This may be due to differences in software or hardware or the absence of
fixed seeds [33, 162, 166]. Therefore, we evaluate the steps of replication and reevaluation
by examining the distributions of the reported test results and in particular their similarity.
In order to test their equality, we compute the two-sided Kolmogorov-Smirnov goodness-
of-fit test (KS-test) [143], which checks whether two samples are drawn from the same
distribution. If the p-value of the test is below the significance threshold, there is evidence
that the results of the experiments are not drawn from the same distribution. It has to be
mentioned that the KS-test can only provide significant results in measuring inequality.

4ht‘cps://gi‘clab .inria.fr/tyrex-public/reproducibility-aaai24

77

https://gitlab.inria.fr/tyrex-public/reproducibility-aaai24

5. Reproducibility Study on Knowledge Enhanced Neural Networks

Reported results Initial Implementation
train | NN KENN Delta | NN KENN Delta
0.540 0.651 0.110
(0.067) (0.017) (0.067)
0.630 0.702 0.072
(0.018) (0.012) (0.012)
0.681 0.745 0.064
(0.187) (0.012) (0.021)
0.733 0.791 0.058
(0.025) (0.016) (0.026)
0.758 0.807 0.049
(0.027) (0.022) (0.028)

10% | 0.544 0.652 0.108

25% | 0.629 0.702 0.073

50% | 0.680 0.744 0.065

75% | 0.733 0.788 0.055

90% | 0.759 0.808 0.049

Table 5.2.: Reproduction Results
5.5. Reproduction

As a first step, the initial experiments with KENN are reproduced. Therefore, (a) the
executable, (b) the dataset, (¢) the instructions and environment information to run the
executable and (d) the procedure to collect and interpret the results are required. Given
these elements, it is possible to process the instructions to reproduce the experiment.

5.5.1. Pitfalls and Workarounds

The paper [47] provides the KENN2? package. It contains the implementation of the
knowledge enhancement layers in Tensorflow but not the experiments. Through an
exchange with the authors, we gained access to the source code and data of the experiments
which were made publicly available!. They also pointed to another paper [46] which
further documents the experiments. The hyperparameters in the public implementation
correspond to the results reported in [46] but not to the results found in [47].

The repository provides (a) a reference to the KENN2 package, (b) a link to the dataset,
(c) a README file with instructions to run the code, and (d) a Jupyter notebook to analyse
the results. The initial experiments use a dataset that is included in the repository instead
of referring to an external, widely available version of the dataset. A link to the data source
was provided, but it was inaccessible. Neither the origin of the data nor any filtering or pre-
processing steps were documented. The instructions to run the experiments are reasonably
complete, including a description of the required Python modules as a requirements file
and the full command line to be run. However, the requirements only contain a list of
packages without their version number. This can be a critical concern as Python packages
evolve frequently, sometimes compromising compatibility. The Python version is not
defined either which can be crucial for the successful execution of the experiments. We
inferred it from the description of the KENN2 package. In both papers [47, 46] experimental
results are reported in numeric tables. Despite seeded random operations, we observe

78

5.5. Reproduction

subtle variations in the results. We note a non-deterministic set() operation which may
introduce variation. As a result, exact quantitative reproducibility cannot be guaranteed.

5.5.2. Results

After achieving a fully functional environment setup, we successfully run the experiments.
The obtained results are reported in Table 5.2. In comparison to the results initially
provided [46], we add information such as the standard deviation of the test accuracies
over all runs and the p-values for a t-test.

Qualitative Reproducibility. For H1, KENN significantly outperforms the base neural
network for all training set sizes (p < 0.01) which is consistent with the authors’ claims.
Regarding H2, we observe that the reported difference (column delta) in mean accuracy
between KENN and the base neural network is larger for smaller training set sizes. Note
that, since the initial experiments use paired samples, the means of the deltas can be
reported, though we can only report the difference of the means.

Quantitative Reproducibility. The reported and reproduced results cannot be compared
statistically, since the full sample of the reported results is not available.

5.5.3. Lessons Learned

L1: Provide a Precise Identification of the Software Environment, Source Code and Dataset.
A firstlesson learned is that the complete description of the software environment including
version numbers of all modules should be provided. Furthermore, the datasets used should
be described precisely, including information on their origin and on any applied pre-
processing. Both are critical information to reproduction.

L2: Automate the Steps for Reproduction. A second lesson learned is that the reproduction
should be made as automatic as possible by the initial authors. Such an automation would
even be useful for the initial authors to be able to repeat their experiments routinely.

L3: Provide Contact Information and Be Reachable. The reachability and assistance of the
authors was essential to clarify open questions and to get access to key components for
reproducibility such as the experiment source code.

L4: Distinguish Different Experiments. A unique reference to the experiments was missing.
In fact, the authors published a first version of a paper [48] and then several others [46,
47] which contain improvements and additional experimental settings. Still, all papers
point to the same repository. This complicates the reproduction of the experiments of each
paper. It would be a good practice to specify for each paper the version of the repository
or to use another repository.

79

5. Reproducibility Study on Knowledge Enhanced Neural Networks

Parameter Value Paper Code Defaults
NN - Number of Hidden Layers 3 v v

NN - Number of Hidden Neurons 50 v v

NN - Hidden Layer Activation ReLu v v

NN - Output Layer Activation Linear v v

KENN - Clause Weight Initialization =~ Constant, 0.5 v v

KENN - Binary Preactivations 500 4 v

KENN - Number of KE Layers 3 v

KENN - Range Constraint [0.0,500.0] v

Epochs 300 v

Batch Size Full-batch v

Loss function Categorical Cross-entropy v

Early Stopping - Patience 10 v

Early Stopping - Min Delta 0.001 v

Dropout Rate 0.0, no dropout v

Learning Rate 0.001 v
NN - Weight Initialization Random, Glorot uniform v
NN - Bias Initialization Constant, Zeroes v
Optimizer Adam [113], B1 = 0.9, B, = 0.99,¢ = 107/ v

Table 5.3.: The set of hyperparameters used in the initial experiments and how they were
recovered.

5.6. Replication

In this section, the reimplementation in PyTorch and the replication of the experiments
is detailed. Again, the obtained results are compared to the results of the published and
reproduced experiments. To reimplement the system, we first identify the main compo-
nents of the method by examining, on the one hand, the concepts of KENN introduced in
the initial paper. On the other hand, we examine the code of the initial implementation
to recover necessary information that is underspecified or not explicitly mentioned in
the paper. As main components we identify (a) the data pre-processing, (b) the model
definition, (c) the training loop, and (d) the hyperparameter definition. We reimplement
these components as follows.

Data pre-processing. We use the same Citeseer dataset and prior knowledge as provided
for the initial experiments. We preserve the data splitting procedure, as well as the
rebalancing of the prediction classes.

Model Definition. The KENN model consists of two stacked components: The base
neural network and the knowledge enhancement layers. In the initial implementation, the
base neural network is implemented with Keras [38] and the knowledge enhancement
layers are imported from the KENN2? package written in Tensorflow. We reimplement
both the base neural network and use the knowledge enhancement layers from the KENN2
package®.

80

5.6. Replication

Training Loop. In the training loop, we replace the optimizer and the loss function
implemented in Tensorflow by their PyTorch equivalent.

Hyperparameter Definition. We identify the hyperparameters in the experiments
and their values. To keep track of hyperparameters in a clean manner, we connect the
reimplementation to an experiment tracking tool [22].

5.6.1. Pitfalls and Workarounds

At first sight, the reimplementation in PyTorch seems straightforward. However, we strug-
gle in identifying the hyperparameters used in the initial implementation. The relevant
information has to be gathered from various sources. The set of revealed hyperparameters,
their assignments and how we recovered them is summarized in Table 5.3.

A first subset of hyperparameter values is explicitly named in the initial paper including
the architecture of the base neural network, the initialization of the clause weights and the
binary preactivation value. An additional subset of parameters is defined in a modifiable
script in the repository of the initial implementation. This script contains information
on early stopping (and related parameters), the number of epochs, as well as the size of
the validation set. Additional parameter values are required that are not mentioned in
the paper, nor in the code documentation. By reviewing the source code, we recover the
number of knowledge enhancement layers and the batch size, for example. An additional
subset of hyperparameters is implicitly introduced and defined by framework-specific
functions and their default assignments. These default values are found in the Tensorflow
software documentation. From there, we recover the weight initialization of the dense
layers in the base neural network and the optimizer-specific parameters.

Determining the values of some additional parameters turns out to be even more chal-
lenging. To get useful insights, we examine the isolated behavior of each component
to ensure that they produce the same output, given some input. While randomness is
essential to training neural networks, it complicates the analysis of the algorithm behavior.
For the inspection of some components, we temporarily simplify operations and replace
random numbers by fixed values. This allows to identify that linear layers are by default
differently initialized in Tensorflow and in PyTorch. In Tensorflow, they are initialized
randomly following a Glorot uniform distribution and the bias is initialized with zeroes.
However, in PyTorch the weights and biases are randomly initialized following the uniform
distribution.

5.6.2. Results

After recovering the full set of required parameter values and completing the reimplemen-
tation of KENN, we now assess the replicability of the experiments. The results of the
replication are summarized in Table 5.4.

81

5. Reproducibility Study on Knowledge Enhanced Neural Networks

Reimplementation

Delta | p-values

means | KS Test

10% | 0.550 (0.042) 0.629 (0.076) 0.079 0.001

25% | 0.632(0.016) 0.676 (0.088) 0.044 0.024

50% | 0.681(0.014) 0.741 (0.028) 0.060 0.583
(0.022)
(0.026)

train NN KENN

75% | 0.729 (0.022) 0.785 (0.039) 0.056 0.054
90% | 0.748 0.806 (0.020) 0.058 0.702

0.026

Table 5.4.: Replication results

Qualitative Reproducibility. We first check whether H1 and H2 hold in the replicated
experiment. We observe that the p-values of the t-test comparing the test accuracies for
all training set sizes fall below the significance threshold in favor of H1 which is thus
supported by the replication. For H2, considering the deltas of the mean test accuracies
across the training set sizes, no clear relationship between training set size and its effect
on the knowledge enhancement is apparent. This may be due to a reproducibility failure
or to the lack of an explicit procedure to test H2 in the initial work. In conclusion, we are
able to confirm H1, but we are not able to replicate the results concerning H2.

Quantitative Reproducibility. The average accuracies of both implementations are
relatively close (the highest observed difference is 0.02). However, their distributions are
not identical. The similarity of the test accuracy distributions is computed against the test
accuracy of the reproduced results, since we do not have the initial results from the authors
of KENN. The p-values of the KS-test are listed in the right column. For the 10% training
size, a significant difference (p < 0.01) between the distributions of the reproduced and
replicated results is detected. For the remaining training set sizes, no difference appears
significant. Hence, we consider our results as reasonably similar to those of the initial
implementation, at least for large sample sizes. The accuracy obtained with 10% training
set size appears less variable than the one on larger training sets.

5.6.3. Lessons Learned

L5: Document Hyperparameters Exhaustively. The identification of all hyperparam-
eters together with their assignments is critical for replication as they can considerably
affect the results and thus the conclusions drawn from them. While some hyperparameters
such as learning rate and batch size are standard in deep learning methods, custom models
often define their own hyperparameters, such as KENN’s clause weights. Since they affect
different components, hyperparameters are often declared at different stages in the exper-
iment, which complicates their identification. In particular, some hyperparameters are
implicitly defined as default parameters in the used library and are easily overlooked. A
complete configuration file with the exhaustive list of hyperparameters, their description,
and their value is key to replicability.

82

5.7. Reevaluation

L6: Provide Clear Procedures to Check Claims. To evaluate qualitative reproducibility,
we rely on the authors’ procedures for verifying their hypotheses. With respect to H2, the
lack of a precise procedure complicates the evaluation of the replicability. Clear procedures
for the verification of claims are essential to ensure their replicability.

L7: Define Standards to Evaluate Reproducibility. In order to evaluate quantita-
tive reproducibility, we use the KS-test that can only give statistical evidence that two
distributions are not equal. Other metrics are proposed in [163]. To the best of our knowl-
edge, no community standard on the evaluation of quantitative reproducibility exists. A
community-agreed standard is needed to determine when two distributions of results are
considered equivalent.

5.7. Reevaluation

Having reproduced and replicated the experiments with KENN, we now reevaluate the
method on two more datasets Cora [144] and Pubmed [218]. The goal of this reevaluation
is first, to check if the implementations behave robustly in the same way on different
datasets and second, to evaluate whether the hypotheses for KENN are valid on other
datasets. These datasets are also citation graphs. While Cora and Citeseer have a similar
size, Pubmed is significantly larger. Similarly to the experiments on Citeseer, the prior
knowledge encodes a relation of paper category and citations. To avoid variations in the
results due to hyperparameters, we use the set identified in Table 5.3 for all datasets. In
general, hyperparameters should be determined separately for each dataset in order to
obtain models with the best possible prediction quality. However, we are mainly concerned
with obtaining the same results instead of the best possible results.

5.7.1. Results

The results for Cora and Pubmed are shown in Table 5.5 and 5.6. When applying KENN
to Pubmed, we encounter a performance issue with the data pre-processing in the initial
implementation. We modify the pre-processing to improve its scalability while maintaining
its functionality.

Qualitative Reproducibility. H1 is supported in both implementations for Cora (p <
0.01). Concerning H2, the deltas in the initial implementation indicate a relationship
between decreasing training set size and knowledge enhancement. However, this difference
is rather uncertain for the reimplementation. For H1 on PubMed, the p-values of the t-
tests are not below the significance threshold across all training set sizes, for the initial
implementation only for training set sizes 10% and 25% and for the reimplementation for
training set sizes 10%, 50%, 75% and 90%. Hence, no significant performance is gained
with KENN. Furthermore, no monotonically increasing benefit of knowledge enhancement

83

5. Reproducibility Study on Knowledge Enhanced Neural Networks

Initial Implementation| Reimplementation
Delta |p-val
trainNN KENN Delta NN KENN O & |prvaues
means |KS-Test
0.530 0.750 0.220 0.576 0.766 —4
10% 0.190 |8.9 10
(0.029) (0.017) (0.030) |(0.016) (0.010)
0.606 0.800 0.193 0.647 0.819 ~10
25% 0.173 |8.410
(0.018) (0.012) (0.016) |(0.009) (0.012)
0.652 0.833 0.187 0.678 0.831 _1
50% 0.152 |5.9 10
(0.013) (0.009) (0.017) [(0.009) (0.013)
0.691 0.850 0.159 0.686 0.833 4
75% 0.147 |2.9 10
(0.016) (0.014) (0.018) [(0.013) (0.015)
0.715 0.871 0.156 0.743 0.913 11
90% 0.170 (9.2 10
(0.027) (0.016) (0.028) |(0.012) (0.017)

Table 5.5.: Reevaluation results on the Cora dataset

Initial Implementation| Reimplementation
Delt -val
trainNN KENN Delta ~ |NN KENN _© o |[Pvaues
means |KS-Test
0.333 0.405 0.071 0.326 0.404 1
10% 0.077 13910
(0.096) (0.002) (0.096) [(0.098) (0.003)
0.341 0.416 0.075 0.380 0.414 9
25% 0.034 |7.110
(0.108) (0.002) (0.108) [(0.080) (0.004)
0.409 0.443 0.033 0.364 0.441 1
50% 0.077 |1.310
(0.095) (0.004) (0.096) |(0.133) (0.005)
0.447 0.498 0.051 0.414 0.495 1
75% 0.081 |1.310
(0.143) (0.004) (0.143) [(0.176) (0.007)
0.505 0.510 0.004 0.504 0.504 1
90% -0.0001|5.9 10
(0.011) (0.008) (0.011) [(0.015) (0.015)

Table 5.6.: Reevaluation results on the Pubmed dataset

for smaller training set sizes is observed with both implementations, therefore H2 is not

supported by Pubmed.

Quantitative Reproducibility. Comparing the distributions of the test accuracies in both
experiments, the p-values of the KS-tests are below the significance threshold and thus
suggest rejection for all training dimensions except 50%. Therefore, we have statistical
evidence for inequality and thus have not reached qualitative reproducibility on Cora.
However, for Pubmed, the behavior in both implementations is aligned. The KS-test sug-
gests no significant difference between both implementations. In conclusion, quantitative

reproducibility is considered achieved on Pubmed.

84

5.8. Conclusion and Outlook

L1 Provide a precise identification of the software environment, source code and
dataset

L2 Automate the steps for reproduction

L3 Provide contact information and be reachable

L4 Distinguish different experiments

Reproduction

L5 Document hyperparameters exhaustively
Replication L6 Provide clear procedures to check claims
L7 Define standards to evaluate reproducibility

L8 Conduct hyperparameter search

R luati .
cevaluation L9 Verify results on other datasets

Table 5.7.: Summary of the lessons learned

5.7.2. Lessons Learned

L8: Conduct Hyperparameter Search. As expected, with the hyperparameter values
considered earlier KENN does not achieve competitive results on Cora and Pubmed in
comparison to the state-of-the-art [160]. Hyperparameter tuning significantly affects
the results of the experiment. With an appropriate set of hyperparameters for Cora and
Pubmed, better results with KENN may be obtained.

L9: Verify Results on Other Datasets. Overall, the reevaluation experiments show
that KENN improves the accuracy on the Cora dataset, but not on the Pubmed dataset.
Furthermore, by reevaluation on PubMed, we can detect performance issues and address
them, which makes the code applicable to larger datasets in general. As a lesson learned, it
is derived that the application of a model to various datasets can either strengthen results
by showing robustness or reveal weaknesses of methods that occur on specific datasets.

5.8. Conclusion and Outlook

In this chapter, we first progressively reproduced, replicated and reevaluated the exper-
iments with KENN before extending it. In terms of qualitative reproducibility, in most
experiments the hypothesis that KENN outperforms the base neural network (H1) is
supported. The relationship between training set size and accuracy (H2) is observed for
the reproduced experiments but less clear for the replicated and reevaluated experiments.
We summarize all the lessons learned in Table 5.7.

In a broader context, the progressive approach in this work can be incorporated in a
general workflow of extending a related method in machine learning while considering
reproducibility steps, as illustrated in Fig. 5.2. While it is tempting to directly jump from a
task to the development of a new method, the inclusion of the reproduce, replicate and
reevaluate steps can increase the trust in experimental results. To the three steps conducted
in this work, record and repeat can be added to better integrate the new (extended) method
in the state-of-the-art (SOTA). Recording provides a sufficiently detailed documentation
to make the new method accessible and reproducible for the community. Repeating the

85

5. Reproducibility Study on Knowledge Enhanced Neural Networks

reproduce replicate reevaluate record repeat
SOTA choose N\ N\ N\ extend N\ N\ new
method ~ ~ ~ _method / ~ - method

Integrate new work in the state-of-the-art

Figure 5.2.: The general pipeline of extending machine learning methods with the repro-
ducibility steps.

experiment can serve as a self-check of documentation and/or automation. Fig. 5.2 displays
an ideal situation in which the path to extension is flawless. In reality, each step may fail
and lead the design back to the previous action. However, it helps to isolate the cause of
failure at the earliest possible stage.

Further, we note that KENN predominantly satisfies common reproducibility guidelines.
However, we encounter difficulties in reproducing, replicating and reevaluating this
method. This shows that even though guidelines impose an additional burden for develop-
ers, easily and clearly reproducible work reduces the effort required for extending previous
work and therefore accelerates advancements. In this sense, reproducibility guidelines
should be continuously evaluated and modified (if needed) to ensure that they effectively
serve their purpose. From our point of view in the context of this work, reproducibility
checklists could improve by integrating some of our lessons learned.

Moreover, common reproducibility guidelines are mainly oriented towards reproduction,
which ensures that published results correspond to those obtained from the code. Given
strong automation, this may only require to clone and run. Even if replication and
reevaluation outweigh the effort of reproduction, in return, they provide more insight
into the details of an implementation or a method. Moreover, reimplementations make
methods more available to the community. In this sense, efforts towards replication and
reevaluation should continue to be encouraged, e.g. through reproducibility tracks or
challenges [154, 97].

In addition to the general conclusions, this chapter has provided some insights with
relevants to the further course of this work. In particular, the obtained results were verified
with the stepwise approach and the reimplementation was tested for reliability. In addition,
the portability of the results to other data sets was examined. This study has increased the
understanding of the method and provides a good basis for adding extensions based on
the reimplementation.

The lessons learned from this chapter are applied in particular to the following experiments
of this thesis in order to make them reproducible. Thus, we make the code of all experiments
publicly available, list the parameters used and the software requirements, provide a hash
and conduct significance tests to evaluate hypotheses.

86

6. KeGNN: Knowledge Enhancement of
Graph Neural Networks

The previous chapter focused on the reproducibility of the experiments with KENN [46],
where the knowledge enhancement layers are stacked onto a simple multi-layer perceptron
(MLP). However, an MLP is not powerful enough to incorporate graph structure into the
representations. Thus, relational information can only be introduced by binary predicates
in the clauses at the knowledge enhancement part.

In this chapter, the neuro-symbolic approach Knowledge enhanced Graph Neural Networks
(KeGNN) is presented to conduct node classification given graph data and a set of prior
knowledge in form of first-order logic clauses. In KeGNN, knowledge enhancement layers
[46] are stacked on top of a GNN and adjust its predictions in order to increase the
satisfaction of some prior knowledge. In addition to the parameters of the GNN, the
knowledge enhancement layers contain learnable clause weights that reflect the impact of
the prior knowledge on the predictions. Both components form an end-to-end differentiable
model. KeGNN can be seen as an extension to KENN [46] that was successfully applied
to semantic point cloud segmentation, image segmentation and multi-label classification
(46, 45, 73]. In addition, KeGNN integrates a graph neural network as more expressive
basis. Here, KeGNN is instantiated in conjunction with two well-known GNNs: Graph
Attention Networks [196] and Graph Convolutional Networks [114]. KeGNN is applied to
the benchmark datasets for node classification Cora, Citeseer, PubMed [218] and Flickr
[221].

The work of this chapter is published [207].

L. Werner, N. Layaida, P. Geneveés and S. Chlyah, "Knowledge Enhanced Graph
Neural Networks," 2023 IEEE 10th International Conference on Data Science and
Advanced Analytics (DSAA), Thessaloniki, Greece, 2023, pp. 1-10, doi: 10.1109/D-
SAA60987.2023.10302495.

It has been further presented at the 1st International Workshop on Knowledge-Based
Compositional Generalization (KBCG) held in conjunction with IJCAI 2023

Ihttps://knowledgeai.github.io/

87

https://knowledgeai.github.io/

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

edges features
2 feature dimension
a
M - o
a e
§ v H
a|c |6
g s
i . 5
E £
c | e 2 e 5
c
e f f
labels
number of classes
Al DB HCl IR ML AG
al1|{o/ofofo|o0 »
blojojo|o|1]0]
2
c|1|ojo|o|o o0 5
djojofojo|1]|o0 3
£
1lo/ofofo|o
€ 3
flofofol1]olo <

Figure 6.1.: An example extract of the Citeseer citation graph. Nodes represent scientific
publications and labels represent their topics. Edges represent citations be-
tween them.

6.1. Method

KeGNN is a neuro-symbolic approach that can be applied to node classification tasks
with the capacity of handling graph structure at the base neural network level. More
precisely, at its core, KeGNN consists of two components that can both handle graph
data and together form an end-to-end differentiable model. As base component, a graph
neural network produces pre-activations based on node-level and edge-level numerical
information. Knowledge enhancement layers refine these predictions guided by a set
of prior knowledge with the goal of increasing the satisfaction of defined knowledge.
The model takes two types of input: (1) real-valued graph data and (2) prior knowledge
expressed in first-order logic.

6.1.1. Graph-structured Data

First, KeGNN takes as input an node-attributed, labelled graph G = (V, E, X,Y) that consists
of sets of n nodes N, m edges E, node features X € R™4 of dimension d and node labels
Y € {0, 1} with ¢ classes. The label vector y contains one-hot encoded truth labels for ¢
classes. In vector notation, the features and labels of a node v are described as x € R? and
y € {0,1}¢. The edges of the graph can be homogeneous or heterogeneous with multiple
edge types.

88

6.1. Method

Example 6.1.1 (Groundings of Unary and Binary Predicates). Let us define a citation
graph Ggjt that consists of scientific publications and citations between them. Figure 6.1
shows an extract of a citation graph that is used as example to guide through this chapter.
The publications are represented by a set of nodes Vi and citations by a set of edges Ecij.
Publications are attributed with features Xcj; that describe their content as vectors [148].
Each node is labelled with one of the six topic categories {Al, DB, HCI, IR, ML, AG} that
are encoded in Ycj. The classes are abbreviations for the categories Artificial Intelligence,
Databases, Human-Computer Interaction, Information Retrieval, Machine Learning and
Agents. Since all nodes (publications) and edges (citations) have the same type, G¢j; is a
homogeneous graph.

6.1.2. Prior Knowledge

A finite set of ¢ prior knowledge formulae K is provided to KeGNN. The knowlege is
expressed in the logical language £ that is defined over sets of constants C, variables X
and predicates P. Predicates have an arity r of one (unary) or two (binary): = Py U
Pp. Predicates of arity r > 2 are not considered in this work. Unary predicates describe
nodes, and binary predicates describe relations. £ supports negation (—) and disjunction
(V). Each formula ¢ € K is defined as a clause \/3=1 o; with g atoms 01 V ... V 0,. Since
the prior knowledge is general, all clauses are assumed to be universally quantified. A
grounded clause is denoted as ¢[x1, x2, ...|c1, 2, ...] with variables x; € X and constants

¢i € C. The set of all grounded clauses in a graph is G(K, C).

Example 6.1.2 (Prior Knowledge on the Citation Graph). The graph Gg;; in Figure 6.1
is described with L. Nodes are represented by a set of constants C = {a,b,..., f}. The
node labels are expressed as a set of unary predicates Py = {AL DB, ..., AG} and edges
as a set of binary predicates 5 = {Cite}. £ has a set of variables X = {x, y}. The atom
Al(x), for example, expresses the membership of x to the class Al and Cite(x, y) denotes
the existence of a citation between x and y. Some prior knowledge K is written as a set
of £ = 6 clauses in L. Here, the assumption is denoted that two publications citing each
other are member of the same class:

Pa1 : Vxy—Al(x) vV =Cite(x,y) V Al(y)
¢pB : Vxy—DB(x) V —=Cite(x,y) V DB(y)

dac : Vxy—AG(x) V =Cite(x,y) V AG(y)

The atoms are grounded by replacing the variables x and y with the constants {a, b, ... f}
to obtain the sets of unary groundings {Al(a), ML(b),...,IR(f)} and binary groundings
{Cite(a,d), Cite(a, e), ..., Cite(a,f) }. Assuming a closed world and exclusive classes, neg-
ative facts are derived, such as {=DB(a), =IR(a), ..., —Cite(a,b)}.

Note that the knowledge encoded here is considered as soft knowledge that does not need
to fully be satisfied in a logical sense and encodes assumptions that may be violated by

89

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

some instances. For example, there may be two publications that cite each other belong to
different classes. The goal is not to fully satisfy the rules but rather refine predictions in
order to be more consistent with the knowledge. Several ways to encode prior knowledge
exist. Knowledge can be manually handcrafted from common sense assumptions, as in
Example 6.1.2. Furthermore, knowledge might be automatically extracted with rule mining
algorithms, as described in Section 2.3.

6.1.3. Fuzzy Semantics

Let us consider an attributed and labelled graph G and the prior knowledge K. While K is
defined in the logical language £, the neural component in KeGNN relies on continuous
and differentiable representations. To interpret Boolean logic in the real-valued domain,
KeGNN uses fuzzy logic [220], which maps Boolean truth values to the continuous interval
[0,1] € R. A constant in C is interpreted as a real-valued feature vector h € R% A
predicate P € with arity r is interpreted as a function

fr R [0,1] 6.1)

that takes r feature vectors as input and returns a truth value.

Example 6.1.3 (Binary Predicates in KeGNN on the Citation Graph). In the example,
a unary predicate Py € Py = {AL,DB,...} is interpreted as a function fp, : R i [0,1]
that takes a feature vector h and returns a truth value indicating whether the node belongs
to the class encoded as Py. The binary predicate Cite € P is interpreted as the function

fore(o,u) = {1’ if (0, u) € Ecn (62)

0, else.

fcite returns the truth value one if there is an edge between two nodes v and u in G and
zero otherwise.

T-conorm functions L : [0,1] X [0,1] + [0, 1] [116] take real-valued truth values of two
literals and define the truth value of their disjunction. The Gédel t-conorm function for
two truth values t;, t; is

L(t;, tj) — max(t;,t;). (6.3)

To obtain the truth value of a formula ¢ : 0; V ... V 04, the function L is extended to a
vector t of g truth values: L(t,tp,...,t;) = L(t;, L(t...L(t;—1,ty))). Fuzzy negation over
truth values is defined as t — 1 —t [220].

Example 6.1.4 (A Grounded Clause). Given the clause ¢a1 : Vxy —Al(x) V =Cite(x,y) V
Al(y) and its grounding ¢ar[x, y|a, b] : Al(a) V —Cite(a,b) V Al(b) to the constants a and
b and truth values for the grounded predicates Al(a) = t;, AI(b) = t; and Cite(a,b) = t;,
the truth value of ¢ar[x, y|a, b] is max{max{(1 —t;), (1 —t3)},t2}.

90

6.1. Method

truth values of grounded predicates prior knowledge
-AI(x) v ~Cite(x, y) V AI(y)
Al(a),DB(a), ..., AG(a) ~DB(x) v ~Cite(x. y) v DB(y)
features AI(b), DB(b), ..., AG(b) == ~AG(x) v ~Cite(x, y) v AG(y)
feature dimension AI(), DB(), ..., AG(f) —IR(x) V ~Cite(x, y) V IR(y)

~HCI(x) v ~Cite(x. y) v HCI(y)

predictions

number of classes number of classes
__flumper o classes

Al DB HCI IR ML AG Al DB HCl IR ML AG

Knowledge —p
Enhancement

-

\%

Fuzzy operators

? refined
l predictions

@
o
°
<}
=
5
5
-]
=
3
=

- ®o 2 0 T ®

edges
2

number of nodes

- 0 0 0 T o

ola|s|s|s
~lo|o|o|o|a
number of edges

Interpretation

Figure 6.2.: Overview of the KeGNN architecture. A GNN outputs predictions which are
interpreted as truth values for the unary predicates in the logical language
and fed to the knowledge enhancement layers. The knowledge enhancement
layers return refinements for the predictions.

6.1.4. Model Architecture

The way KeGNN computes the final predictions is divided in two stages. First, a GNN
predicts the node classes given the features and the edges. Second, the knowledge en-
hancement layers use the predictions as truth values for the grounded unary predicates
and update them with respect to the knowledge. An overview of KeGNN is illustrated in
Figure 6.2.

6.1.4.1. Graph Neural Network Component

The role of the GNN is to exploit feature information in the graph structure. The key
strength of a GNN is to enrich node representations with graph structure by nesting k
message passing layers, as introduced in Section 3.2. Per layer, the representations of
neighbouring nodes are aggregated and combined to obtain updated representations. The
node representation h**! in the k-th message passing layer is

h**! = combine(h¥, aggregate(m,,|u € N;(0))). (6.4)

The layers contain learnable parameters that are optimized with backpropagation. In
this chapter, we consider two well-known GNNs as components for KeGNN: Graph
Convolutional Networks (GCN) [114] and Graph Attention Networks (GAT) [196], see
Section 3.2.1 and Section 3.2.2. While GCN considers the graph structure as known,
GAT allows for assessing the importance of the neighbours with attention weights «,,

91

number of nodes

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

between node v and node u. In case of multi-head attention, the attention weights are
calculated multiple times and concatenated which allows for capturing different aspects
of the input data. In KeGNN, the GNN implements the functions fp, for unary predicates,
see Equation 6.1 in Section 6.1.3). In other words, the predictions of the GNN are used as
truth values for the grounded unary predicates in the symbolic component

fry = foen(ho, E, Ogen).

In contrast KENN [46] does not consider graph structure at base neural network level:

fey = furp(ho, Omrp).

6.1.4.2. Symbolic Component

To refine the predictions of the GNN, one or more knowledge enhancement layers are
stacked onto the GNN to update its predictions Y to Y’. The goal is to increase the
satisfaction of the prior knowledge. The predictions Y of the GNN serve as input to
the symbolic component where they are interpreted as fuzzy truth values for the unary
grounded predicates U := Y with U € R™¢. Fuzzy truth values for the groundings of
binary predicates are encoded as a matrix B where each row represents an edge (v, u) and
each column represents an edge type e. In the context of node classification, the GNN
returns only predictions for the node classes, while the edges are assumed to be given. A
binary grounded predicate is therefore set to truth value 1 (true) if an edge between two
nodes v and u exists:

B(ourel = {1, if (v,u) of typee € E 6.5)

0, else.

Example 6.1.5 (Unary and Binary Groundings on the Citation Graph). In case of
the beforementioned citation graph of Figure 6.1, the unary and binary groundings U and
B are defined as:

[Cite(a, d)]

Al(a) ... AG(a) Cite(a, e)

_ AI(b) ... AG(b) B Cite(a, ¢)
AI‘(f) . Ad(f) Citekc, e)
Cite(e, f)

Since we only have one binary predicate Cite in this example, B has only one column.

To enhance the satisfaction of clauses that contain both unary and binary predicates, their
groundings are joined into one matrix M € R™* with k = 2 - |Py| + |P5|. M is computed
by joining U and B so that each row of M represents an edge (v, u). As a result, M contains
all required grounded unary predicates for the edges and nodes in the graph.

92

6.1. Method

Example 6.1.6 (Joined Groundings on the Citation Graph). For the example citation
graph, we obtain M as follows:

groundings unary predicates for x groundings unary predicates for y groundings Cite(x,y)
-’ N
~

_ N | ——
AT*(a) DB*(a) ... AG*(a) | AI¥(d) DBY¥(d) ... AGY(d) | Cit(a,d)
AT*(a) DB*(a) ... AG*(a) | A’(e) DBY(e AGY(e) | Cit(a,e)
AT*(a) DB*(a) ... AG*(a) | A'(c) DBY(c AGY(c) | Cit(a,c)

~

AI;(C) DB*(c) ... AG;(C) AI;(e) DBY¥(e) ... AG:y(e) Cit(:c,e)
| AT*(e) DB*(e) ... AG*(e) | AP(f) DB¥(f) ... AGY(f) | Cit(e,f)

As mentioned previously, a knowledge enhancement layer consists of multiple clause
enhancers. A clause enhancer is instantiated for each clause ¢; € K. Its aim is to compute
refinements My, for the groundings in M that increase the satisfaction of ¢;.

First, fuzzy negation is applied to the columns of M that correspond to negated atoms in ¢.
Then, the refinements are computed by a t-conorm boost function 5,4 [48], as introduced in
Section 4.2.3. In this case, M represents the preactivations Z.
A = 5%(Z);; = fit = e

i = ij = Wg - SO maX(Z)i—wqg'q—eZﬂ.

I=1

The function Jy : [0,1]? = [0, 1]? takes g truth values and returns refinements to those
truth values such that the satisfaction is increased: L(t) < L(t+ d(t)). The boost function
dw, employs a clause weight wy that is initialized in the beginning of the training and
optimized during training as a learnable parameter. The refinements for the groundings
calculated by 8., are proportional to wy. Therefore, wy determines the magnitude of the
update and thus reflects the impact of a clause. The refinements to the atoms that do not
occur in a clause are set to zero. The boost function is applied row-wise to M as illustrated
in the following example.

Example 6.1.7 (Refinements on the Citation Graph). Given the clause ¢,; : Vxy—AI(x)V
—Cite(x,y) V Al(y) and the clause weight way, the refinements for this clause are SMy,, =

[5—|AIX(a) 0o ... 5AIY(C) 0o ... 5—|Cit(a,c) -
5_\Alx(a) 0o ... 5AIY(e) 0o ... 5—\Cit(e,a)
WA - 5—|AIX(a) 0o ... 5AIY(d) 0o ... 5—|Cit(C,d) (66)
] 5_|A1x(e) 0o ... 5A1y(f) 0o ... 5—.Cit(e,f) |

The values of 6My,, are calculated as

e ZAl(a)

5—|AIX(a) = ¢WA1(Z)G == (67)

e ZAl(a) 4 e~ ZCit(ac) 4 pZAl(c)

93

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

Name #nodes | #edges | #features | #Classes | train/valid/test split
Citeseer | 3,327 9,104 3,703 6 1817/500/1000

Cora 2,708 10,556 1,433 7 1208/500/1000
PubMed | 19,717 88,648 500 3 18217/500/1000

Flickr 89,250 899,756 500 7 44624/22312/22312

Table 6.1.: Overview of the Citeseer, Cora, PubMed and Flickr datasets

Each clause enhancer computes refinements SMy to increase the satisfaction of a clause
independently. The refinements of all clause enhancers are finally added, resulting in a
matrix M = X gcq 6My. To apply the refinements to the initial predictions, M has to be
added to Y. The refinements in M can not directly be applied to the predictions Y of the
GNN. Since the unary groundings U were joined with the binary groundings B, multiple
refinements may be proposed for the same grounded unary atom. For example, for the
grounded atom Al(c) the refinements d_ap (c) and 8-arx() are computed, since ¢ occurs in
the grounded clauses ¢ar[x, y|a, c] and ¢par[x, ylc, e]. In citation graph in Example 6.1.1 the
node v, occurs in first place of edge (v,, v;) and in second place of edge (v, v.). Therefore,
all refinements for the same grounded atom are grouped and summed, which reduces the
size of M to the size of U.

To ensure that the updated predictions remain truth values in the range of [0, 1], the
knowledge enhancement layer refines the preactivations Z of the GNN and to Z’ and then
applies the activation function o to Z’ in order to obtain the final predictions: Y’ = o(Z’).
The refinements by the knowledge enhancer are added to the preactivations Z of the GNN
and passed to o to obtain the updated predictions

Z+) 8Uy

peK

Y =0 (6.8)

where 6Uy is the matrix obtained by aggregating the refinements to the unary predicates
from 6My. Regarding the binary groundings, the values in B are set to a high positive
value that results in one when o is applied.

6.2. Experimental Evaluation

To evaluate the performance of KeGNN, node classification experiments are conducted.
In the following, KeGNN is called KeGCN and KeGAT when instantiated to a GCN or
a GAT, respectively. As additional baseline, we consider KeMLP, that stacks knowledge
enhancement layers onto an MLP, as proposed in [46]. Furthermore, the standalone neural
models MLP, GCN and GAT are used as baselines.

94

6.2. Experimental Evaluation

6.2.1. Datasets

The models are tested on the datasets Citeseer, Cora, PubMed and Flickr that are common
benchmarks for node classification. Citeseer, Cora and PubMed are citation graphs that
encode citations between scientific papers as in Example 6.1.2. Flickr contains images
that are represented by nodes and shared properties between them that are represented
by edges. All datasets are modelled as homogeneous, labelled and attributed graphs as
defined in Section 6.1.1. Table 6.1 gives an overview of the datasets used in this chapter.
The datasets are publicly available on the dataset collection of PyTorch Geometric [61].
For the split into train, valid and test set, we take the pre-defined splits in [35] for the
citation graphs and in [221] for Flickr. Word2Vec vectors [148] are used as node features
for the citation graphs and image data for Flickr. The models are trained and evaluated in
a transductive setting.

6.2.2. Prior Knowledge

The set of prior logic for the knowledge enhancement layers is manually defined. In this
work, we encode the assumption that the existence of an edge for a node pair points to their
membership to the same class and hence provides added value to the node classification
task. In the context of citation graphs, this implies that two documents that cite each
other refer to the same topic, while for Flickr, connected images share the same properties.
Following this pattern for all datasets, a clause ¢: Vxy : =Class;(x)V —Link(x, y)VClass;(y)
is instantiated for each node class Class; withi € {1,...,c}.

6.2.3. Implementation

The source code of the experiments are publicly available?. It is based on PyTorch [161]
and the graph learning library PyTorch Geometric [61]. The Weights & Biases tracking
tool [22] is used to monitor the experiments. More experimental details can be found in
Appendix A.1.

6.2.4. Results

Performance. To compare the performance of all models, we examine the average test
accuracy over 50 runs (10 for Flickr) for the knowledge enhanced models KeMLP, KeGCN,
KeGAT and the standalone base models MLP, GCN, GAT on the listed datasets. The results
are presented in Table 6.2. For Cora and Citeseer, KeMLP leads to a significant improvement
over MLP (p-value of one-sided t-test << 0.05). In contrast, no significant advantage of
KeGCN or KeGAT in comparison to the standalone base model is observed. Nevertheless,
all GNN-based models are significantly superior to KeMLP for Cora. This includes not

Zhttps://gitlab.inria.fr/tyrex/kegnn. The hash is ddb05f37d390fd06181bac8275aac45962b74 0

95

https://gitlab.inria.fr/tyrex/kegnn

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

MLP KeMLP | GCN KeGCN | GAT KeGAT
Cora 0.7098 0.8072 0.8538 0.8587 0.8517 0.8498
(0.0080) (0.0193) | (0.0057) (0.0057) | (0.0068) (0.0066)
. 0.7278 0.7529 0.748 0.7506 0.7718 0.7734
CiteSeer
(0.0081) (0.0067) | (0.0102) (0.0096) | (0.0072) (0.0073)
0.8844 0.8931 0.8855 0.8840 0.8769 0.8686
PubMed
(0.0057) (0.0048) | (0.0062) (0.0087) | (0.0040) (0.0081)
Flickr 0.4656 0.4659 0.5007 0.4974 0.4970 0.4920
(0.0018) (0.0012) | (0.0063) (0.0180) | (0.0124) (0.0189)

Table 6.2.: Average test accuracy of 50 runs (10 for Flickr). The standard deviations are
reported in brackets and the highest value per dataset is marked in bold.

Model | Avg Epoch Time
MLP 0.02684
GCN 0.03109
GAT 0.06228

KeMLP 0.04304
KeGCN 0.03747
KeGAT 0.08384

Table 6.3.: Comparison of the average epoch times on the Citeseer dataset.

only KeGCN and KeGAT, but also the GNN baselines. For Citeseer, KeGAT and GAT both
outperform KeMLP. In the case of PubMed, only a significant improvement of KeMLP
over MLP are observed, while the GNN-based models and their enhanced versions do not
provide any positive effect. For Flickr, no significant improvement between the base model
and the respective knowledge enhanced model are observed. Nevertheless, all GNN-based
models outperform KeMLP, reporting significantly higher mean test accuracies for KeGAT,
GAT, GCN and KeGCN.

Runtime. The average runtimes per epoch on the Citeseer dataset are compared for all
models in Tab 6.3. The runtimes were reported for models with three hidden layers and
three knowledge enhancement layers in full-batch training. It is noted that the knowledge
enhancement layers lead to increased runtimes compared to the base models since the
overall model complexity is higher.

6.2.5. Exploitation of the Graph Structure

It turns out that the performance gap between MLP and KeMLP is larger than for KeGNN
in comparison to the standalone GNN. To explain this observation, we examine how
the graph structure affects the prediction performance. In Figure 6.3 we analyse the
accuracy grouped by the node degree for the entire graph for MLP vs. KeMLP and GCN
vs. KeGCN. The findings for KeGAT are in line with those for KeGCN. It is observed that
KeMLP performs better compared to MLP as the node degree increases. By contrast, when
comparing GCN and KeGCN, for both models, the accuracy is superior for nodes with a
higher degree.

96

6.2. Experimental Evaluation

Accuracy Grouped by Node Degree

06 ™= MLP
T . emLP
> 0.5
®
S 04
>
S 03
go
0.2
0.1
0 1 2 3 4 5 >5
0.7
0.6
> 0.5
1%
C 04
3
]
<
0.2
0.1
0 1 2 3 4 5 >5
0.8
0.7
> 0.6
1}
® 05
3 04
[}
< 03
0.2
0.1

2 Node Degree

Figure 6.3.: The accuracy grouped by the node degree for MLP vs. KeMLP (above) and
GCN vs. KeGCN (center) and GAT vs. KeGAT(below) on Citeseer.

This shows that rich graph structure is helpful for the node classification in general.
Indeed, the MLP is a simple model that misses information on the graph structure and
thus benefits from graph structure contributed by KeMLP in the form of binary predicates.
On the contrary, standalone GNNs, even without knowledge enhancement layers, can
handle graph structure by using message passing techniques to transfer learned node
representations between neighbours. The prior knowledge introduced in the knowledge
enhancer is simple. It encodes that two neighbours are likely to be of the same class. An
explanation for the small difference in performance is that GNNs may be able to capture
and propagate this simple knowledge across neighbours implicitly, using its message
passing technique. In other words, we observe that, in this case, the introduced knowledge
happens to be redundant with GNNs. However, the introduced knowledge significantly
improves the accuracy of MLPs. In this context, we discuss perspectives for future work
in Section 6.3.

97

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

6.2.6. Robustness to Incorrect Knowledge

Another question of interest is how the knowledge enhanced model finds a balance between
knowledge and graph data when they are inconsistent. In other words, can the KeGNN
successfully deal with nodes having mainly neighbours that belong to a different ground
truth class and thus introduce misleading information to the node classification?

To analyse this question, we categorize the accuracy by the proportion of misleading nodes
in the neighbourhood, see Figure 6.4. Misleading nodes are the nodes in the neighborhood
of a node that have a different ground truth class than the node to be classified. It turns out
that KeMLP is particularly helpful compared to MLP when the neighbourhood provides
correct information. However, if the neighbourhood is misleading (if most or even all of
the neighbours belong to a different class), an MLP that ignores the graph structure can
lead to even better results. When comparing KeGCN and GCN, there is no clear difference.
This is expected, since both models are equally affected by misleading nodes as they rely
on the graph structure. Just as a GCN, the KeGCN is not necessarily robust to wrong
prior knowledge since the GCN component uses the entire neighbourhood, including the
misleading nodes.

When comparing GCN to KeMLP, see Figure 6.4 (below), KeMLP is more robust to mislead-
ing neighbours. While GCN takes the graph structure as given and includes all neighbours
equally in the embeddings by graph convolution, the clause weights in the knowledge
enhancement layers provide a way to reduce the importance of the prior knowledge. If the
data frequently contradicts a clause, the model has the capacity to reduce the respective
clause weight in the learning process and reduce its impact.

6.2.7. Clause Weight Learning

Furthermore, we want to examine whether the clause weights learned during training
are aligned with the knowledge in the ground truth data. The clause weights provide
insights on the magnitude of the refinements made by a clause. The clause compliance [48]
measures how well the prior knowledge is satisfied in a graph.

Definition 6.2.1 (Clause Compliance). Given a graph G = (N,E, X,Y) and a clause ¢ in
first-order logic, the clause compliance is

ZueVi ZueN(v) H[ifu € Vl]

Compliance(G, ¢) = S N ,
VEV;

where N(v) is the first-order neighbourhood of a nodev € V, i is a class in {1,...,c} and
V; C V is the subset of nodes that have the ground truth label of classi: V; = {v € V | y(v) =

i).

98

6.2. Experimental Evaluation

0.8
0.7
0.6
© 0.5
0 0.4
0.3
0.21
0.11

mm GCN
= KeGCN

. MLP
m KeMLP

o o
oo

Accuracy
o
N

0.3
0.2
0.1
0% <25% <50% <75% <100% 100% 0% <25% <50% </5% <100% 100%
Percentage Percentage
== GCN
0.74 = KeMLP
0.64
3
& 0-51
—
3 0.4
()
<
0.3
0.2
0.14
0% <25% <75%<100% 100%
Percentage

Figure 6.4.: The accuracy grouped by the ratio of misleading first-order neighbours for
GCN vs. KeGCN (left), MLP vs. KeMLP (right), GCN vs. KeMLP (below) on

o o o
IS 3 o

Clause Compliance
o
w

the Citeseer dataset.

KeMLP

. om‘:‘-‘-’-" 3

° W?.ﬁ.'.'":

0.2 ':.M'.M‘.t %°

0.2 0.4 0.6 0.8
Learned Clause Weight

1.0

KeGCN
0.7
[]
806 "z‘ &
C
®
go.s
§ rvemlas e .
0.4
()
35
®
Oo3
@
0o PRKee .
00 02 10 1.2

0.4 06 0.8
Learned Clause Weight

Figure 6.5.: The learned clause weights vs. clause compliance for KeMLP (left) and KeGCN

(right) on the Citeseer dataset.

99

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

Evolution of compliance Evolution of compliance
0.9+ 0.7
0.6
O]
V]
© 0.8 Q0.5
S 2
e gO 4
£ o
S So.3
0.7
0.2
0.1
0-61 0.0]
6 5 1o 15 20 35 30 35 0 5 10 15 20 25
Epoch . Epoch
-- = base NN, line = after enhancement -- = base NN, line = after enhancement
B forall xy: not Cls 0(x) or not Cite(x,y) or ClsO(y) | EEl forall xy: not Cls 0(x) or not Cite(x,y) or ClsO(y) |
B forall xy: not Cls 1(x) or not Cite(x,y) or Cls1(y) B forall xy: not Cls 1(x) or not Cite(x,y) or Cls1(y)
forall xy: not Cls 2(x) or not Cite(x,y) or Cls2(y) forall xy: not Cls 2(x) or not Cite(x,y) or Cls2(y)
forall xy: not Cls 3(x) or not Cite(x,y) or Cls3(y) forall xy: not Cls 3(x) or not Cite(x,y) or Cls3(y)
forall xy: not Cls 4(x) or not Cite(x,y) or Cls4(y) forall xy: not Cls 4(x) or not Cite(x,y) or Cls4(y)
I forall xy: not Cls 5(x) or not Cite(x,y) or Cls5(y) Il forall xy: not Cls 5(x) or not Cite(x,y) or CIs5(y)

Figure 6.6.: The clause compliance during training for GCN vs. KeGCN (left) and MLP vs.
KeMLP (right) on the Citeseer dataset.

In other words, the clause compliance counts how often among nodes of a class Cls; the
neighbouring nodes have the same class. The clause compliance is calculated on the
ground truth classes of the training set or the predicted classes. As a reference, we measure
the clause compliance based on the ground truth labels in the training set. Figure 6.5
displays the learned clause weights for KeGCN and KeMLP versus the clause compliance
on the ground truth labels of the training set. For KeMLP, a positive correlation between
the learned clause weights and the clause compliance on the training set is observed. This
indicates that higher clause weights are learned for clauses that are satisfied in the training
set. Consequently, these clauses have a higher impact on the refinements of the predictions.
In addition, the clause weights corresponding to clauses with low compliance values make
smaller refinements to the initial predictions. Accordingly, clauses that are rarely satisfied
learn lower clause weights during the training process. In the case of KeGCN, the clause
weights are predominantly set to values close to zero. This is in accordance with the
absence of a significant performance gap between GCN and KeGCN. Since the GCN
itself already leads to valid classifications, smaller refinements are required by the clause
enhancers.

Furthermore, we analyse how the compliance evolves during training to investigate
whether the models learn predictions that increase the satisfaction of the prior knowledge.
Figure 6.6 illustrates the evolution of the clause compliance for the six clauses for GCN vs.
KeGCN and MLP vs. KeMLP. It is observed that GCN and KeGCN yield similar results as
the evolution of the compliance during training for both models is mostly aligned. For
MLP vs. KeMLP the clause compliance of the prediction of the MLP converges to lower
values for all classes than the clause compliance obtained with the KeMLP. This provides
evidence that the knowledge enhancement layer actually improves the satisfiability of the

100

6.3. Limitations

prior knowledge. As already observed, this indicates that the standalone GCN is able to
implicitly learn to satisfy the prior knowledge even though it is not defined in a knowledge
enhancement layer.

6.3. Limitations

The method of KeGNN is limited in some aspects.

Homogeneous graph structure. Here, KeGNN is only applied to homogeneous graphs.
In reality, however, graphs are often heterogeneous with multiple node and edge types
[217]. Adaptations are necessary on both the neural and the symbolic side to apply KeGNN
to heterogeneous graphs. The restriction to homogeneous graphs also limits the scope
of formulating complex prior knowledge. Eventually, the datasets used in this work and
the set of prior knowledge are too simple for KeGNN to exploit its potential and lead to a
significant improvement over the GNN. The experimental results show that the knowledge
encoded in the symbolic component leads to significant improvement over an MLP which
is not capable to capture and learn with that knowledge. This suggests that for more
complex knowledge that is harder to encode in the message passing layers of a GNN,
KeGNN has the potential to bring greater improvements.

Closed world assumption. Another open question is how to support negation, namely
edges that do not exist between two nodes. The graph is assumed to be complete (closed
world assumption). An open question is how the method scales with large multi-relational
graphs and considering all negated links. In the specific case here, negated atoms —Cite(x, y)
are neglected since the clauses of this form in the experiments are always true if no edge
between x and y exists. This situation is not obvious with any type of prior knowledge
with several different binary predicates. Furthermore, the closed world assumption is
not appropriate in many scenarios as graphs are incomplete and missing edges do not
necessary mean that a relation does not hold true.

Link prediction. Furthermore, limitations occur in the context of link prediction with
KeGNN. For link prediction, a neural component is required to predict fuzzy truth values
for binary predicates. At present, KeGNN handles clauses containing binary predicates.
However, their truth values are initialized with constant prediction values, where a high
value encodes the presence of an edge. This limits the application of KeGNN to datasets
for which the graph structure is complete and known a priori.

Small scale. So far, KeGNN and KENN [46] have only been applied to rather small graphs
that are magnitudes smaller than graphs often found in the real-world. The scalability of
the knowledge enhancement layers in KeGNN to large graphs remains an open question,
which will be addressed in the next sections.

101

6. KeGNN: Knowledge Enhancement of Graph Neural Networks

6.4. Conclusion and Outlook

In this work, we introduced KeGNN, a neuro-symbolic model that integrates GNNs with
symbolic knowledge enhancement layers to create an end-to-end differentiable model.
This allows the use of prior knowledge to improve node classification, while exploiting
the strength of a GNN to learn expressive representations. Experimental studies show that
incorporating prior knowledge has the potential to improve simple neural models such
as MLPs. However, knowledge enhancement of GNNs is more difficult to achieve on the
underlying and limited benchmarks, where the injection of simple knowledge about local
neighbourhood is redundant with the representations that GNNs are able to learn.

With respect to the neuro-symbolic desiderata formulated in Section 4.1, KeGNN is
knowledge-aware because it allows the incorporation of first-order logic clauses in the
form of differentiable knowledge enhancement layers. The incorporation of more complex
knowledge, such as existential quantification or conjunction, is still an open question.
Thanks to the use of knowledge and the use of the base neural network, KeGNN is robust
to noise in the data and also to prior knowledge that is not fully satisfiable in a logical
sense. Regarding interpretability, clause weights provide a way to make the impact of
knowledge on predictions more quantifiable. In terms of scalability, the application to
large graphs with numerous negated atoms is an open question. There are also limitations
with respect to the closed-world assumption and the focus only on node classification and
homogeneous graphs. Nevertheless, KeGNN has the potential not only to improve graph
completion tasks from a performance perspective, but also to improve interpretability
through clause weights. This work is a step towards a holistic neuro-symbolic method on
incomplete and noisy semantic data, such as knowledge graphs.

102

7. Knowledge Enhancement on Large
Graphs

The KeGNN [207] method presented in Section 6 integrates prior knowledge in the form
of logical clauses into a neural network by adding knowledge enhancement layers to
the network architecture. Previous results show that the knowledge enhanced models
outperform pure neural models on small graphs [136, 46]. However, the used benchmark
graphs are unsatisfactory in terms of quality (homogeneous) and quantity (small size)
[93, 182] and are therefore unsuitable for testing complex models. Consequently, the
applicability of knowledge enhancement layers to large graphs with a high number of
nodes and edges is still an open question.

This chapter focuses on the scalability of the concept of knowledge enhancement layers in
the context of graphs and addresses two important obstacles. First, classic deep learning
approaches commonly use mini-batch stochastic gradient descent (SGD) in the training
phase. By splitting the dataset into smaller batches, memory utilisation can be reduced,
which is particularly important on memory-constrained GPUs. However, the application
of standard mini-batch SGD to is not well suited for graphs, because nodes are connected
by edges and are consequently not independent. Therefore, the partitioning into batches
must ensure that the relevant information in the form of node neighbourhood is available
in every batch. Second, the problem of neighbourhood explosion [138, 59] can occur
when stacking multiple knowledge enhancement layers with binary clauses. The number
of nodes required for the computations in the knowledge enhancement layers grows
exponentially with respect to the number of layers. This can lead to a drastic increase in
memory usage during training on GPUs, to the point of infeasibility.

To address these issues, we propose a graph-specific mini-batching strategy called Re-
strictive Neighbourhood Sampling to make knowledge enhancement applicable to large
graphs. The methods KENN [46] and KeGNN are tested on two datasets for node classifi-
cation from the Open Graph Benchmark (OGB) [93], namely ogbn-arxiv and ogbn-products.
OGB [93] is a collection of diverse datasets that provides large and informative graphs
for benchmarking complex models. The experiments show that the proposed Restricted
Neighbourhood Sampling technique makes the knowledge enhancement on large graphs
feasible.

103

7. Knowledge Enhancement on Large Graphs

7.1. Problem Statement for Knowledge Enhancement on
Large Graphs

This section elaborates on the problem of how the number of knowledge enhancement
layers and the arity of the predicates in the logical language affect the memory requirements.
Recall the concepts and notations of knowledge enhancement in Section 6.1.4.

7.1.1. Memory Requirements of a Knowledge Enhancement Layer

For a knowledge enhancement layer that enhances only unary clauses, the clause weights
and the matrix with the unary groundings have to be stored. This results in memory
requirements that increase linearly with the number of nodes n in the graph.

For graph data, the changes applied to a grounded predicate depend not only on the
grounding of one variable, but also on the groundings of the two variables that are linked
by binary predicates. In other words, not only the representation of a node itself from
the previous layer is required, but also the representation of the nodes to which the node
is connected by an edge, namely the first-order neighbourhood N;(v) of a node v. To
increase readibility, the notation is simplified to N; from here on. Consequently, the unary
predicates of the connected nodes must be encoded in a single representation. Therefore,
the knowledge enhancement layers for binary clauses consist of a join operation that
merges binary predicates and the binarised unary predicates into a single matrix M, as
shown in the Examples 6.1.6 and 6.1.7 of Chapter 6. After joining binarised unary and
binary predicates, M looks as follows:

unary groundings PL); unary groundings Pg binary groundings P;y
(v1,01) chfl (01) P[),C/'p(vl) P[y]l(vl) Pg (U]) PBI(Ul,Ul) PBq(val)
(on0) | Ppy. (vy) ... P;}p (v1) Pgl (vg) ... PUp (v2) | Pp,(v1,02) ... Pp,(v1,02)
M= . . . (@)
(On,0n) PEI (G P[)}P (on) Pgl (0n) ... P[y]p (0n) | P, (0n,0n) ... PBq (0n,0n)

The number of columns depends on the number of unary predicates p and binary predicates
q and results in 2-p+q. The number of rows corresponds to the number of all possible binary
combinations of nodes in the graph that equals n®. This representation allows to encode
all possible groundings of the binary predicates. Under the closed world assumption,
nodes that are not connected by an edge are considered as negative grounded atoms.
In consequence, the shape of M is R™*(2P+) This leads to memory requirements that
increase quadratically with respect to the number of nodes in the graph (O(n?)).

Depending on the shape of the clauses in the prior knowledge, the number of rows can be
reduced. The clauses used in Chapter 6, for example, have the form —A(x)V—B(x,y) VC(y)
with only negated binary grounded atoms. Since this example assumes that the groundings
of the binary atoms are deterministic, any pair of two nodes between which no edge is

104

7.1. Problem Statement for Knowledge Enhancement on Large Graphs

L-th layer N
Figure 7.1.: lllustration of neighbourhood explosion.

observed is interpreted as a negative grounded binary predicate. Thus, from a logic point
of view, the clause is already satisfied for any grounding of the other predicates. Hence,
the negative binary grounded atoms are be neglected in this case. This reduces the number
of rows in M from n* to m, where m is the number of edges in the graph.

7.1.2. Multiple Knowledge Enhancement Layers

The number of knowledge enhancement layers stacked impacts the memory requirements
of the whole knowledge enhanced model. When stacking multiple knowledge enhance-
ment layers with binary clauses, the refinements recursively depend on the results of the
previous layer. By stacking L binary knowledge enhancement layers, the L-th neighbour-
hood N is used to calculate the refinements of a grounded atom that occurs in the binary
clause.

The memory requirements depend not only on the number of layers and nodes in the
graph, but also on the connectivity of the graph, which is indicated by the node degree.
The number of nodes to be stored in the memory increases exponentially with respect to L,
see Figure 7.1). In the worst case, the required neighbourhood N results in the complete
graph. The exponential growth of the relevant nodes with the number of layers is referred
to as neighbourhood explosion [62]. It is a well-known problem in the graph neural network
domain.

Example 7.1.1 (Multiple Knowledge Enhancement Layers with Binary Clauses).
Here, two knowledge enhancement layers are stacked, supporting the binary clause
¢ : Vxy : 2AI(x) vV ~Cite(x,y) V Al(y). The following example graph is considered where
nodes represent scientific publications edges denote citations.

105

7. Knowledge Enhancement on Large Graphs

We illustrate now the refinements that are applied to the atom AI(a) by the clause ¢. The

refined prediction Y’[a’ Al for the atom AI(a) by the first knowledge enhancement layer

with clause weight W;l) is calculated as follows:

eZlaArn

— (1)
Y/[a,AI] = 0| Z4an +W¢ .

e ZiaAn 4 e~ Zcitelab] 4 eZib.An

=refinements by 1st layer

Z’[a,AI]

It is evident that the enhancement of a binary clause aggregates not only grounded
predicates referring to the constant a, but also grounded predicates for node a’s first-order
neighbours in the graph, namely Z; 7).

Stacking a second knowledge enhancement layer with clause weight W;Z) results in the

following computation:

Z' (a,Ar
” =0 Z/ + W(2) . € LAl =
[a.AI [a,Al] ¢ o Zaan 4 g~Z Citelab] 4 Z [bAI

=refinements by 2nd layer

Zlaal])

(1),
e(z[“’A’]+w¢ o Z1aAl] 4, ZCitelab] 1,2 bAI]

o|Z; + W(z) . .
(LAl ’ (Z[b,AI]+w;1). Z1bAT])

e_Z’[a,AI] + e_Z,Cite[a,b] +e e*Z[b,AI] +e*ZCite[b,c] _H_,Z[C,AI]

=refinements by 2nd Knowledge Enhancer

As we can see, the refinement of Z”[, 41j in the second layer depends on the grounded
predicates of the second-order neighbours of node a, namely node ¢ and node d.

7.2. Mini-batch Gradient Descent on Graphs

Traditional deep learning approaches often use mini-batch gradient descent to train neural
networks on memory-constrained GPUs [127]. The dataset is divided into disjoint subsets,
which are called mini-batches of size b. The network parameters are updated after each
forward pass of a mini-batch through the neural network. This does not only lead to
favorable properties such as more stable convergence and generalization, but also reduces
the memory requirements, since batches can be processed independently of each other in
parallel.

106

7.2. Mini-batch Gradient Descent on Graphs

Figure 7.2.: The application of standard mini-batch gradient descent to graph data. The
inter-batch edges (drawn in dotted and red) are not simultaneously available.

However, dividing a dataset into mini-batches is less obvious for graph data. This originates
from the fact that the nodes in a graph are by design not independent. When splitting a
set of nodes V of a graph G into batches, neighbouring nodes may appear in different
batches and therefore not be available simultaneously. The following equation illustrates
the effect on the adjacency matrix A when splitting a graph into mini-batches of size b,
where b € {1,2,...,n}.

- b n-b "

of (00,00); -+ (0, 08) (00, 0np) (v0, o)

o| (0 00) - 3 (o, 0p) P (03, z:,n_b) (o0
b| (0n:0) - - (0n-p:08) S TR (o)
o @uo) o) (0ns0net) -+ (O 0n)

The adjacency matrix A of the entire graph is divided into adjacency matrices per mini-
batch (marked in blue). The edges connecting nodes within a batch are called intra-batch
edges and the edges connecting nodes in different batches are called inter-batch edges. The
inter-batch edges are not simultaneously available and are consequently neglected during
training.

Example 7.2.1 (Mini-batching on graphs). Consider the example graph G = (V,E)
in Figure 7.2. The set of nodes V = {vy,...,09} is split into two disjoint subsets V; =
{vo,...,04} and Vy = {ovs,...,09}. The set of inter-batch edges {(v1,v5), (v2,v5), (v1,07),
(v6,v1), (v3,06)} C E is neglected when applying standard mini-batching to the graph.

We define this information loss in form of inter-batch edges as a function of the batch size
and the number of nodes.

107

7. Knowledge Enhancement on Large Graphs

Definition 7.2.1 (Information Loss). Given a graph G = (V, E) with n nodes, adjacency
matrix A and batch size b, the information loss £(b, n) is defined as £(b,n) = n® — % - b

Here, n? is the size of the adjacency matrix A, b? is the size of each adjacency matrix per
batch and 7 is the number of batches. To simplify notations, we assume that n mod b = 0.
If the batch size converges to the full size of the graph, an information loss of zero is
obtained.
. 2_ N2
lim é(b,n) =n“— —-n”“=0. (7.3)
b—n n

In contrast, the information loss increases when the batch size decreases.

limé(bn) =n? - 2 1=n?—1. (7.4)
b—1 1

7.3. Restrictive Neighbourhood Sampling

The goal is to balance information loss and complexity when dividing the graph into
batches. On the one hand, the batches must be small enough to fit into the memory. On
the other hand, a sufficient number of nodes and edges are requisite to approximate the
training on the full graph and minimize information loss.

To this end, we propose Restrictive Neighbourhood Sampling (RNS). The aim is to find a set
of batches in which many intra-batch edges are retained, while a few inter-batch edges
are neglected. To this end, RNS creates so-called batch graphs at the pre-processing stage
by sampling nodes from the neighbourhood. RNS proceeds by randomly sampling from
the set of nodes without replacement until all nodes are taken. This way, disjoint sets of
target nodes are obtained. Then, the samples of the 7-order neighbourhoods of the nodes
are integrated. The number of neighbours to be sampled is constrained by the following
hyperparameters that can be chosen in accordance with the available memory capacity
and the topology of the graph:

« The batch size b is the number of target nodes in each batch graph.

« The sampling depth r, t € {1,...L}, is the depth of the neighbourhood taken into
account.

« The neighbour size p, p € {1, ...n} is the number of neighbours sampled per sampling
depth level.

The pseudocode of RNS is introduced in Algorithm 1. A graph node-attributed, labeled
graph G = (V,E, Xy, Y) is considered as input. For the sake of readability, the index of the
node features will be omitted in the following. In the first step j = 1 of j € {1, ... r}, initial
batch graphs are drawn randomly from V without replacement, so that each node appears in
exactly one batch together with its feature vector and label: {(V], X}, Y}),..., (V5 X4, Yg)).
With batch size b, the number of batch graphs is denoted as S = [#]. These nodes V| are
called target nodes for the i-th batch graph. The last batch may contain less than b nodes
if n mod b > 0. In the following iteration, p first-order neighbours are sampled from the

108

7.3. Restrictive Neighbourhood Sampling

Algorithm 1 Restrictive Neighbourhood Sampling
Input

Graph G = (V,E, X, Y)

Parameters: batch size b, sampling depth 7, neighbour size p
Output

List of batch graphs: G1(Vy,E1, X1, Y1), ..., Gs(Vs, Es, X5, Ys)

LS [7] > calculate the number of batches
2: V], V), ..., Vi « randomly sample without replacement from V > create target node sets
3: forie{1,...,5} do

4: for je{1,...,7} do

5: N{ « randomly sample p nodes from N; (V{)

6: V{H — V{ U N{ > add to the set
7: end for

8: end for

target nodes’ first-order neighbourhood N (V}) of the i-th batch graph and added to the

node set of the batch graph. Together, they form the updated node set V{ *! for the i-th
batch graph of the next iteration j + 1:

VI = VI UN (V) (7.5)

To obtain a sample of the second-order neighbours, the set of first-order neighbours is
traversed. For each node in the set of first-order neighbours, p neighbours are sampled
and added. This procedure is repeated until the sampling depth j = 7 is reached. The edges
between the target nodes and all sampled neighbours are retained so that each batch graph

corresponds to a subgraph G{ = (V{, E{,X{,Y{) with i € {1,...,S} in iteration j. The
hyperparameters b, 7 and p have to be chosen carefully. If b and p are too large, the sampled
graph might still exceed the available memory resources and result in out-of-memory

errors during training,.

In a forward pass of a knowledge enhanced neural network, the set of batch graphs is
handled sequentially, see Algorithm 2. Some nodes might appear in several batch graphs
as sampled neighbours. However, each node appears only in one batch graph as target
node. If a node contributed to the loss more than once, a bias is introduced. For this reason,
only the predictions of the target nodes contribute to the batch loss, while the predictions
for the neighbouring nodes are only involved in the refinement calculations.

As mentioned in Section 7.1.1 and in particular in Equation 7.1, the memory requirements
with full-batch training increase quadratically with the number of nodes in the graph. In
contrast, applying standard mini-batching regardless of the graph structure leads to the
loss of inter-batch edges, see Definition 7.2.1. RNS allows to constrain the problem with
the parameters b, p and 7. RNS considers S = [] batch graphs of size b + 7 - p, which
constrains the memory requirements per batch with fixed parameters. The S batch graphs
can be processed sequentially or in parallel.

109

7. Knowledge Enhancement on Large Graphs

Algorithm 2 Forward Pass with Batch Graphs Sampled with RNS
Input
Graph G = (V,E, X, Y)
Knowledge enhanced model Mg with a set of trainable parameters ©
Loss function L
Output
Training loss per epoch lepoch

1: I_epoch « 0

2: G1,Gy,...,Gs «— RNS(G,1,b,p) > create batch graphs with RNS in Algorithm 1.
3: forie{1,...,5} do

4 Y — Mo(X:, E;) > Predict classes for all nodes in the batch graph.
5: Y~ Y[l:b,-] > Take only predictions of target nodes
6 I, —L(Y,Y) > compute the batch loss
7 lepoch < lepoch + I > update the epoch loss
8: end for

9: return lepoch

a | X, | Ya
b | x| Ub 1
— Vl

C Xc yC

d | Xz | Ya

e | X | ve

f | x5 |vr
2
 — \A

& | Xg | Yg

h | X, | yn

i|x| v
i|x| Y ;
k& |a| Vi

1| % | v

Figure 7.3.: lllustration of Restrictive Neighbourhood Sampling in Example 7.3.1. Left: The
graph G with V = {v,, ..., v;}. Right: the initial batch graphs of target nodes.

110

7.4. Experimental Evaluation

With RNS, the information loss from definition 7.2.1 is

n
Erns(n, b, 7, p) =n2—5'b2—P'T (7.6)

with p,7 > 0 where &rns(n, b, 7,p) < &(n,b). Increasing the parameters batch size,
sampling depth and neighbourhood size leads to a lower information loss, but to higher
memory requirements. The hyperparameters can be selected tailored to the application
depending on the available memory capacity, graph connectivity and size as well as the

number of knowledge enhancement layers.

Example 7.3.1 (Restrictive Neighbourhood Sampling). We consider a graph G with
n = 12 nodes V = {v,,vp, 0, ...0;} as illustrated in Figure 7.3. The parameters are set
tob = 4,7 = 2 and p = 3. In the first iteration, the set of nodes is split into sets of
target nodes, which results in three batch graphs. Regarding the first batch graph for
j = 1, we have V} = {vg, Up, 0, 04} (line 1 of Algorithm 1). Then, for p = 3 nodes are
randomly sampled from Nl(Vll) = {01, 04, 0g, 0k, 0}, Of, Uhs }, which results for example in
N} = {vg,040¢} (line 4 of Algorithm 1). This set is appended to set of target nodes:
{04, 0y, e, 0a} U {04, vg, 07} = {04, Vp, Ve, V4, Vg, 0F } = V# (line 5). Then, in j = 2, samples are
drawn from the first-order neighbourhood of the nodes in V2. This procedure is repeated
for all three batch graphs, until j = 2 is reached. The final subgraphs are returned.

7.4. Experimental Evaluation

To test knowledge enhancement on large graphs, KeGNN is evaluated in the context of
a multi-class node classification task on two benchmark datasets from the Open Graph
Benchmark (OGB) [93]. OGB is a publicly available collection of various graph datasets
for benchmarking. Further, we test whether the RNS technique is effective in mitigating
the neighbourhood explosion problem in the context of binary clauses on large graphs.

7.4.1. Datasets

In the experiments, the OGB datasets ogbn-arxiv and ogbn-products are used [93, 61].
They represent homogeneous, node-attributed and labelled graphs for node classification.
They exceed the size of the datasets used in the previous experiments with KeGNN, see
Chapter 6. The datasets are further characterised in Table 7.1.

ogbn-arxiv. Ogbn-arxiv [200] is a citation graph extracted from the scientific platform
Arxiv. Each node in the graph represents a research paper of the computer science domain.
Directed edges between nodes indicate citations. Each paper has a 128-dimensional feature
vector that is obtained with a word2vec [148] model from the text in the title and the

111

7. Knowledge Enhancement on Large Graphs

ogbn-products | ogbn-arxiv
nodes 2.449.020 169.343
edges 61.859.140 1.166.243
classes 47 40
Feature dimension | 100 128
Avg. node degree | 50.5 13.7

Table 7.1.: Overview of the ogbn-arxiv and ogbn-products datasets. The symbol # stands
for the number of instances.

abstract. The documents in the graph belong to one of 40 classes. The dataset is split into
training, validation and test set based on the publication dates with ratio of 54/18/28.

ogbn-products. Ogbn-products is a co-purchasing network that contains products sold
on the platform Amazon [20]. The products are represented by nodes in the graph. Two
nodes are connected by an edge if the respective products are purchased together. The
dataset contains node features that are derived from the product descriptions and encoded
as bag-of-word vectors. The dataset is split into training, validation and test set according
to the sales rank with a ratio of 8/2/90. The task is to predict one of 47 product categories
per node.

7.4.2. Prior Knowledge

The prior knowledge for the knowledge enhancement layers is manually derived, as in
[46]. For ogbn-arxiv, the previous assumption that two documents belong to the same
class when they cite each other is encoded, resulting in 40 clauses of the form

VxVy : =Class(x) vV =Cite(x,y) V Class(y). (7.7)

For ogbn-products, two products are supposed to belong to the same category if they are
purchased together, which results in 47 clauses of the form

VxVy : =Class(x) V =CoPurchased(x,y) V Class(y). (7.8)

As in [46] and as already described above, the edges and binary predicates are assumed
to be known a priori and deterministic. For this reason, the preactivation of the binary
predicate Cite(x,y) or CoPurchased(x,y) are set to a high positive value. As mentioned
above, negative groundings of binary predicates, namely nodes that that are not connected
by an edge, are neglected. The clause weights are initialized with a constant value of 0.5.

7.4.3. Hyperparameters and Experiment Setting
As in Chapter 6, knowledge enhancement layers are stacked onto an MLP and a GCN

and the resulting models are designated KeMLP and KeGCN, respectively. The model
architecture for the GCN and MLP proposed in [93] is adapted. The MLP and GCN consist

112

7.4. Experimental Evaluation

ogbn-arxiv ogbn-products
avg test avg epoch | avgtest | avgepoch
accuracy time accuracy | time
MLP 0.5403 (0.0061) | 0.065 OOM -
KeMLP | 0.5713 (0.1063) | 0.768 OOM -
GCN 0.5273 (0.019) 0.182 OOM -
KeGCN | 0.4978 (0.0205) | 0.888 OOM -

Table 7.2.: Results with full-batch training on ogbn-arxiv and ogbn-products. The average
test accuracies and average epoch times (in seconds) are shown. The standard
deviation is noted in brackets.

of three hidden layers with hidden dimension of 256, batch normalisation layers [101]
and ReLu activation after each hidden layer. For the MLP, the hidden layers are linear
layers [161] and for GCN graph convolutional layers [61]. Regarding the knowledge
enhanced models KeMLP and KeGCN, three knowledge enhancement layers with the
clauses in Section 7.4.2 are stacked. For all models, the logarithmic softmax function [161]
is employed as activation function in the last layer. The categorical cross entropy loss
function [161] is optimized during training. The full set of hyperparameters is listed in the
Appendix A.2.

In the experiments, the models MLP, GCN, KeMLP and KeGCN are compared. All four
models are trained and evaluated with full-batch training and RNS. Multiple independent
runs are conducted per experiment and the average mean accuracy yu is reported, as
recommended in [93]. The following one-sided Student t-tests are performed to test
whether the knowledge enhanced models outperform the baseline models MLP and GCN:

Hy : pvmip 2 pxEpps Hit pMip < HKEpp- (7.9)

Hy : poeN 2 PKEgens Hi @ HoON < HKEgen -

7.4.4. Implementation

The implementation of RNS and the experiments are publicly available on GitLab!. We
use PyTorch [161] and modules from the graph learning library PyTorch Geometric [61].
The Weights and Biases application [22] is used to monitor the experiments.

7.4.5. Results

Full-batch Training. The results with full-batch training for ogbn-arxiv and ogbn-
products are presented in Table 7.2. While the full-batch training on ogbn-arxiv is feasible
for all models, full-batch training on ogbn-products results in an out-of-memory error for

1ht‘cps ://gitlab.inria.fr/tyrex/scalable_ke
at Hash 99c114a43ad625ada%e4cb5326588022579b1a53.

113

https://gitlab.inria.fr/tyrex/scalable_ke

7. Knowledge Enhancement on Large Graphs

RNS on ogbn-arxiv RNS on ogbn-products
avg test avg epoch | avg test avg epoch
accuracy time accuracy time

MLP 0.5206 (0.0314) | 0.09 0.5970 (0.0039) | 4.17
KeMLP | 0.5701 (0.0067) | 2.77 0.6416 (0.0029) | 6.50
GCN 0.5473 (0.0071) | 1.02 0.7224 (0.0051) | 4.13
KeGCN | 0.5373 (0.0242) | 2.94 0.7144 (0.0041) | 6.78

Table 7.3.: Results with RNS training on ogbn-arxiv and ogbn-products. The average
test accuracies and average epoch time are shown in seconds. The standard
deviation is noted in brackets.

all experiments, as also reported in [62]. For ogbn-arxiv, KeMLP significantly outperforms
the MLP, reporting a p-value of 7.21e™!7 that is smaller than the significance threshold of
0.05. In case of KeGCN, no significant improvement is found with a p-value of 0.2277. It is
shown that the knowledge enhanced models KeMLP and KeGCN have higher runtimes
compared to the baselines. These observations are consistent with the results obtained
in Chapter 6, where a significant improvement is achieved with KeMLP, but not with
KeGCN.

RNS Training. The results with RNS training are displayed in Table 7.3. The models
for ogbn-products can now be trained successfully without out-of-memory errors. For
both datasets, KeMLP significantly outperforms the MLP. For KeGCN, no improvement
compared to the GCN is significant. It can also be observed that the test accuracies
reported for training with RNS on ogbn-arxiv are superior to the test accuracies for full-
batch training. This comparison cannot be made for ogbn-products, as no results were
obtained from full-batch training.

Overall, our results in this chapter confirm the results obtained by [46] on the Citeseer
dataset with KeMLP and the results in Chapter 6. The KeMLP outperforms the MLP, but
the KeGCN does not outperform the GCN. As already detailed in Section 6.2.4, several
hypotheses support this observation. The GCN can handle relational information and is
therefore a more complex model than the MLP, which relies only on node features. As a
result, a GCN’s knowledge gain is expected to be less than that of an MLP. Furthermore,
each knowledge enhancement layer introduces clause weight parameters. In the case of
ogbn-arxiv, there are 40 clauses to be satisfied. With three knowledge enhancement layers
this leads to 120 additional training parameters. This might lead to overfitting. The prior
knowledge in these experiments handcrafted based on an assumption concerning the
relationship between document class and citations. If this relationship is not present in the
dataset, the knowledge enhancement layer might introduce additional noise. In order to
better investigate the conjunction of graph neural networks with knowledge enhancement
layers, further experiments with different sets of logic formulae and other datasets are a
future work.

Similar observations as in Chapter 6 are now obtained at scale. Although no significant
prediction improvement has yet been observed, the RNS training technique is effective
in making knowledge enhancement training feasible on memory-constrained GPUs. It

114

7.5. Limitations and Perspectives

is therefore a step towards more extensive experimentation and advancement of neuro-
symbolic techniques.

7.5. Limitations and Perspectives

While this chapter proposes solutions for knowledge enhancement at scale, the aforemen-
tioned limitations of KeGNN remain. These include the applicability to heterogeneous
graphs, the consideration of links under the open-world assumption and the adaptabil-
ity to link prediction. A line of future work is the application of knowledge enhanced
neural networks to heterogeneous graphs. An appropriate benchmark compromising
node features is the Wikilumni dataset [2]. Another line of future work is to improve
the scalability of the implementation of knowledge-based neural networks, for example
through parallelization techniques.

RNS is also limited in some aspects. Firstly, the reduction method of the neighbourhood is
done once at pre-processing stage. An extension would be to re-sample the batch graphs
at every epoch [80, 221]. Sampling per epoch would increase the coverage and is likely to
introduce neighbours that were not sampled at the epoch before. Furthermore, clustering
methods [37] may be useful to find a trade-off between batch size and information loss.
The appropriate choice of RNS parameters based on experimental findings is still an open
question.

7.6. Conclusion

This chapter investigated how knowledge enhancement with binary clauses can be applied
to large graphs. First, the memory requirements of knowledge enhancement layers with
binary clauses on graphs was analysed. It was shown that the problem of neighbourhood
explosion can occur when multiple knowledge enhancement layers are used. To alleviate
this problem, RNS was introduced, which makes it possible to control the space requirement
using parameters.

To test whether RNS is effective, knowledge enhancement was applied to a GCN and an
MLP, which were tested on the benchmark datasets ogbn-arxiv and obgn-products The
KeMLP outperforms an MLP significantly, while no significant improvements is achieved
for the GCN. These results are aligned with the results reported in Chapter 6.

Even though no significant prediction improvement has been observed yet, the RNS train-
ing technique is shown to be effective in rendering the training of knowledge enhancement
with binary clauses feasible on memory-constrained GPUs. Furthermore, to the best of our
knowledge, this is the first application of knowledge enhancement layers to a large-scale
benchmark from the graph neural network domain. It is therefore an important step
towards addressing scalability aspects in neuro-symbolic Al and enabling applications on
real-world use cases.

115

7. Knowledge Enhancement on Large Graphs

Regarding the neuro-symbolic desiderata, the points discussed in Section 6.4 are still
relevant. However, this chapter was dedicated to the topic of scalability in the context
of knowledge enhanced neural networks on graphs. While full-batch KeGNN training is
not applicable on memory-constrained GPUs, it can be applied to large graphs by using
sampling methods such as RNS.

116

8. RuleKGE: Learning Rule-Injected
Knowledge Graph Embeddings on
Incomplete Knowledge Graphs

As explained in Chapter 1.1.2, knowledge graphs are a rich source of information that
has recently received a lot of attention from research and industry. Knowledge graph
embeddings represent the entities and relations of a knowledge graph in the vector space
with the intention of capturing its regularities geometrically. However, their training and
evaluation process is subject to some major limitations. First, the informative value of the
embedding vectors depends on the one hand on the expressiveness and inductive capacity
of the chosen knowledge graph embedding method, but also on the quality of the training
data. Patterns that are not observed in the data during training may fail to be captured in
the model and may not be retained during inference. Furthermore, many state-of-the-art
knowledge graph embedding methods fail to capture common inference patterns [3].

Another challenge is the creation of negative examples. Knowledge graphs only store
positive facts that are known to be true. However, in order to identify negative facts and
avoid overgeneralisation to the positive facts, negative facts need to be included in the
training. At the same time, knowledge graphs are often incomplete. This can happen
unintentionally due to flaws in graph extraction. For performance reasons, many implicit
facts are not explicitly stored because they can be inferred from other facts and would
therefore be redundant. Hence, knowledge graph embeddings are typically trained under
the local closed world assumption. In the state-of-the-art, negative facts are randomly
generated by corrupting the head or tail of facts. Therefore, the entity is replaced by another
entity in the knowledge graph [26]. On the one hand, this procedure likely generates facts
that obviously negative but meaningless, e.g. (Paris, capitalOf, AngelaMerkel). This
runs the risk of overfitting to trivial cases. On the other hand, a risk of sampling false
negatives remains. In other words, negative facts may be generated that are actually true
but are not included in the set of positive facts due to the incompleteness of the graph.

Most knowledge graph embedding methods focus solely on the facts. Moreover, the
general knowledge about the facts from the ontology is often neglected by knowledge
graph embedding methods. However, ontologies can be of great benefit to make embedding
training more efficient and qualitatively better, especially with incomplete and noisy data.
Neuro-symbolic methods are intended to unify the symbolic information in the ontology
with the numerical information in knowledge graph embeddings.

117

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

Neuro-symbolic methods such as KeGNN is not well suited for knowledge graphs. Firstly,
the dense representation of groundings is based on the closed world assumption. Since
knowledge graphs are often incomplete and large, this representation is inappropriate. In
dense adjacency matrix representations, every combination of entities has to be encoded,
which is not feasible for large graphs. In addition, interpreting unobserved facts as
incorrect facts can result in false negative facts for incomplete graphs. Furthermore, KeGNN
addresses the task of node classification. Its application to the task of link prediction has
not yet been studied. However, in knowledge graph research, link prediction is a task of
high importance, as it has many applications, e.g. in recommender systems, biological
networks or information retrieval.

In this chapter, the neuro-symbolic method called RuleKGE is presented for training
knowledge graph embeddings with the support of rules. RuleKGE belongs to the category of
knowledge-driven graph augmentation approaches and the objective is to learn meaningful
embeddings on incomplete knowledge graphs while exploiting ontological knowledge.
To this end, a knowledge graph embedding model and a Datalog reasoner are combined.
The reasoner is used for positive reasoning and negative reasoning. In positive reasoning,
implicit facts are made explicit. In negative reasoning, rules are used to generate more
reliable negative facts. The aim is to improve the generation of negative facts through
reasoning, with two objectives: Firstly, to generate more meaningful negative facts, and
secondly, to reduce the risk of false negatives. The reasoning steps are performed per
batch graph in the training set, and the inferred positives and facts are iteratively added
to augment the explicit facts in the batch graph. In this way, knowledge in the form of
additional facts is introduced at the training stage. This allows the model to learn patterns
that can be useful at inference.

RuleKGE is evaluated through experiments on the Family dataset [120], which encodes
kinship relationships between entities. Experiments are conducted with different sets of
prior logic rules that are typically found in an ontology. These rule sets include for example
symmetry, inversion, composition and antisymmetry patterns. The experiments show that
RuleKGE achieves the goal of learning more meaningful knowledge graph embeddings
despite incomplete datasets and unseen relations.

8.1. Incomplete Knowledge Graphs

First, we formally define the incompleteness of a knowledge graph. Given a knowledge
graph K = (&, R, W) with finite sets of entities & and relations R, consider the closed
world W C & x R x & with facts f € W. The total number of facts in the world is
n=|W|=|R|-|E|? This is shown schematically in Figure 8.1. ‘W consists of two disjoint
sets of positive ‘W™ and negative ‘W™ facts, so that W = W* U W™ and W N W~ =0.
Consider that we observe a set of positive facts ¥+ c “W. We call them explicit positive facts.
Knowledge graphs typically do not explicitly denote negative facts. Various assumptions
can be made to categorise the remaining facts ‘W\F* into positive and negative facts.

118

8.2. Method

Figure 8.1.: Illustration of incomplete knowledge graphs.

The Closed World Assumption (CWA) assumes that ‘W* = F*. Consequently, all facts
that are not in ¥ are assumed to be negative: W~ = & X R Xx E\F*. Under the Local
Closed World Assumption (LCWA), only a subset of negative facts ¥~ € ‘W~ is considered,
since the number of facts in ‘W~ is usually orders of magnitude larger than in “W*:
|'W™| > |'W*|. Under the Stochastic Local Closed World Assumption (SCLWA), the set of
negative facts 7~ is randomly sampled from W~ = & x R x E\F*. This is achieved by
randomly replacing the head or tail for a positive fact (h,r,t) € F and replacing it with a
random entity k', t’ € & to generate a negative fact (h’,r,t) or (h,r,t"). This procedure is
called uniform negative sampling [9, 26].

In contrast, under the Open World Assumption (OWA), we assume that the remaining
facts are positive or negative, but we do not know to which set each fact belongs to:
WN\F = WHF U W, with disjointness WH\F* U W~ = 0. The set of positive facts
that are not contained in the set of explicit positive facts W*\F™ is referred to as implicit
positive facts. Under the Stochastic Open World Assumption the set of negative facts ~ is
sampled whereby the facts might be false negative facts. In other words, the set of negative
facts ¥~ consists of true negatives ¥~ U ‘W™ and false negatives: F° = F~ U W™,

8.2. Method

We propose RuleKGE, a neuro-symbolic method that combines a reasoning engine with
logical rules and a knowledge graph embedding method to learn embeddings for an
incomplete graph under the OWA. The aim is to reduce the bias introduced by false
negatives and incomplete positive facts, thereby improving the quality of the resulting
knowledge graph embedding and link predictions.

RuleKGE takes as input a set of positive facts and a set of rules specified in Datalog, see
Section 2.1. The rules are user-defined or originate from an ontology. They describe
patterns that the facts in the knowledge graph should respect. During training, a Datalog

119

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

program is instantiated given a subset of the explicit facts and the set of rules. By forward
chaining, a set of positive and negative facts are inferred with the rules forming an
augmented graph of positive and negative facts. This augmented graph is used in the
training of the knowledge graph embedding method and is the input to the loss function.

8.2.1. Reasoning Engine

The reasoning engine is based on a set of rules ¥ and a set of facts #, which together
form a Datalog program. F[r] = [(ep e:)°, ..., (e e;)"] describes a set of n facts under
the relation r € R with head and tail entities ep, e; € &. We consider the sets of positive
relations R* and negative relations R™.

The set of positive facts ¥ [r] is denoted as a joint set of facts under all positive relations
reR":
Firl =) Flrl. (8.1)
reR*
The set of negative facts ¥ [r] is denoted as a joint set of facts under all negative relations
reR:
FIrl =] #lrl (8.2)

reR-

Rules encode semantics about the facts in a graph. While the positive facts in the graph
represent the grounded atoms in the program, the rules are predefined and formulate
knowledge about the facts in the domain.

Rules. The rules are formulated in the logical language £ = {C, P, V}, which consists of
finite sets of constants C, variables V and predicates with arity in {1, 2}, namely unary
and binary predicates. Binary predicates P(x, y) indicate relations between two variables
x and y. Unary predicates are denoted as P(_,y) and P(x,_) and refer to the variable x
or y. The operators negation —, conjunction A, disjunction V and implication « allow
to form logical expressions of predicates. The rules are formulated as Horn rules in £,
consisting of a head 1 and a body B. The body B contains a predicate or a conjunction of
predicates, while the head is a single atom. The rules are read from the right to the left as
"If-Then" rules. The variables that occur in the head must occur at in at least one atom
in the body. Further, we consider rules where the atoms in the body of the rule must not
contain a negative relation.

The rules are distinguished in positive and negative rules. A rule ¢* with a head atom
with a positive relation r € R* is called a positive rule:

¢ n— B (8.3)

A finite set of positive rules is denoted as X = {¢],..., ¢, }.

Example 8.2.1 (Positive Rules). Here, the set of positive rules X" describes the patterns
composition and hierarchy between the relations parent, mother, father and sibling.

120

8.2. Method

1 % define relations
2 rel parent, mother, father, sibling

' % define rules
parent(x,y) ¢« mother(x,y) or father(x,y)
6 sibling(y,z) « parent(x,z) and parent(x,y)

In constrast, a rule with a head atom with a negative relation r € R™ is called a negative
rule:

d)_ AT/ ﬂ (84)
A finite set of negative rules is denoted as X~ = {¢,..., ¢, }.

Example 8.2.2 (Negative Rules). Here, the set of rules X~ describes the patterns anti-
symmetry and mutual exclusion between the relations mother and father.

1 % define relations
rel mother, father
rel not_mother, not_father

% define rules
6 not_mother(x,y) <« mother(y,x)
not_father(x,y) <« father(y,x)
8 not_father(x,y) ¢« mother(y,x)

Facts. While rules are assumed to be provided, the explicit positive facts contained in the
graph are interpreted as grounded atoms in the logic program. The set of facts #* must
be consistent with the rules in X*. In other words, the facts added to the program have to
be a model of the rules. A batch graph B* is a subset of explicit positive facts B* C ¥ of
size b. Given L, the facts in 8" represent predicates grounded to constants. The set of
binary predicates in L is a subset of the relations R in the graph.

Given a set of rules, the facts are divided into extensional and intensional facts, depending
on the relation ¥*[r] associated with them. An extensional relation is a relation that
occurs only in the body of the rules, while an intensional relation is a relation that occurs
in the head of a rule.

Example 8.2.3 (Positive Rules and Facts). The previous example on positive rules
is extended with the facts F*[mother] and F*|[father] for the relations { mother, father }
CcR:

1 % define relations
rel parent, mother, father, sibling

) % define rules
parent(x,y) <« mother(x,y) or father(x,y)

121

8. RuleKGE: Learning Rule-Injected Knowledge Graph Embeddings on Incomplete Knowledge
Graphs

sibling = IR

Figure 8.2.: Illustration of Example 8.2.4. The black arrows indicate the set of explicit
positive facts B8*. In the first reasoning step, the implicit positive facts under
the relation parent (dashed, red) are inferred. In the second reasoning step, the
fact under the relation sibling (dashed, red) is inferred . All facts in the graph
form the set 8% when the fixpoint is reached.

6 sibling(y,z) <« parent(x,z) and parent(x,y)

8 % define facts
9 mOther‘ = [(“b“, ||e||)’ (”b“, ”d”)]
10 father = [("a", "d")]

8.2.2. Reasoning with Positive Rules

The evaluation of a rule ¢* € =* on a set of facts 8" involves the following steps. First,
the body expression B of the rule is evaluated. Second, the corresponding head atom 7 is
inferred. Third, the inferred positive fact is concatenated with the explicit positive facts.
Thus, the reasoner implements a function from a set of explicit positive facts and the rules
to an updated set of positive facts containing explicit and implicit positive facts.

A fact f” is an immediate consequence of * and B* if f” is in F*[r] for some extensional
relation r € R or if f* < fi,..., f, is an instantiation of a rule ¢ € * and f3, ...f, € B*.
The function T defines a set of immediate consequences B/, for the positive rules X* and
explicit positive facts B;:

T:3% 8 — 8, (8.5)
For a batch graph of explicit positive facts 8%, the output of T(Z*, B8¥) consists of all facts
f € W that are immediate consequences of 8% and 2*. The operator T is monotone: B C
T(B*). While new facts can be added, once inferred facts cannot be removed. The function
T can be applied several times to the set of facts: T?(2¥, 8%) = T(T(Z*, 8%)), T*(=*, 8%) =
T(T(T(Z*,8%))) and T"(Z*, B*) =T(...T(T(Z*, B8*))). It follows

B CT(EN, B8 CT*(EHBY) C...CcT"(=", 8Y). (8.6)

122

8.2. Method

Starting from the explicit positive facts 87, this process is repeated until a fixpoint is
reached. A fixpoint is reached at step N for all] > N if

TN(=Y, 8% =T/ (3, 8%). (8.7)
The least fixpoint operator Ifp°(T) is defined as
Ifp°(T)=To---oT=TN (8.8)

if there exists a minimum N > 0 such that TN (8%) = TN+1(8*).

Overall, the function implemented by the positive reasoner is a least fixpoint operator:
16p®(T) : B, 3% > B°. (8.9)

The set of facts generated at the fixpoint is 8% = TN(Z*, 8%). The final fact set after
reasoning B¢ is defined as the disjunction of the fact sets for all relations in the graph at
the fixpoint.

8= | | FIr®. (8.10)

VreR

The number of inferred implicit positive facts is A™ = |8%| — |B7|.

Example 8.2.4 (Reasoning with Positive Rules and Facts). As illustrated in Fig-
ure 8.2, the rules